The Bourne-Again Shell

Chet Ramey
chet.ramey@ gmail.com

1. Introduction

A Unix shell is a program that, at its base, provides an interface to the features the operating system
provides for running commands. It allows a user to invoke commands with arguments that are usually
treated as strings. In addition to simply executing commands, a shell is a fairly rich programming lan-
guage: there are constructs for flow control, alternation, looping, conditionals, basic mathematical opera-
tions, named functions, string variables, and two-way communication between the shell and the commands
it invokes.

When the shell invokes a command, it can control (redirect) the input and output the command sees,
and can connect commands by allowing the output of one command to become the input of another (a pipe-
line). The pipeline concept is central to this article. Each invoked command returns a status to the shell,
which the shell uses for constructs like if-then-else and while.

Shells can be used interactively, from a terminal or terminal emulator such as xterm, and non-interac-
tively, reading commands from a file. Most modern shells, including bash, provide command-line editing,
in which the command line can be manipulated using emacs- or vi-like commands while it’s being entered,
and various forms of a saved history of commands.

One of the most familiar shell constructs is the pipeline, where two or more commands are connected
in a linear fashion so that the output of one command becomes the input of the next.

Bash processing is much like a shell pipeline: after being read from the terminal or a script, data is
passed through a number of stages, transformed at each step, until the shell finally executes a command and
collects its return status.

This chapter will explore bash’s major components: input processing, parsing, the various word
expansions and other command processing, and command execution, from the pipeline perspective. These
components act as a pipeline for data read from the keyboard or from a file, turning it into an executed com-
mand.

2-

[Figure 1 here]

1.1. Bash

Bash is the shell that appears in the GNU operating system, commonly implemented atop the Linux
kernel, and several other common operating systems, most notably Mac OS X.

The name is an acronym for Bourne-Again SHell, a pun on Stephen Bourne, the author of the direct
ancestor of the current Unix shell /bin/sh, which appeared in the Bell Labs Seventh Edition Research
version of Unix, combined with the notion of rebirth through reimplementation.

Bash is an sh-compatible shell that incorporates useful features from the Korn shell (ksh) and other
shells such as the C shell (csh). It is intended to be a conformant implementation of the IEEE POSIX
Shell and Utilities specification IEEE Working Group 1003). It offers functional improvements over sh for
both interactive and programming use.

Like other GNU software, Bash is quite portable. It currently runs on nearly every version of Unix
and a few other operating systems — independently-supported ports exist for hosted Windows environ-
ments such as Cygwin and MinGW, and ports to Unix-like systems such as QNX and Minix are part of the
distribution. It only requires a Posix environment to build and run, such as one provided by Microsoft’s
SFU.

The original author of Bash was Brian Fox, an employee of the Free Software Foundation. I am the
current developer and maintainer, a volunteer who works at Case Western Reserve University in Cleveland,
Ohio. One consequence of my never having been paid to work on Bash is that it has always been the equiv-
alent of a hobby. While I have had to work around the rest of my life, Bash development has been rela-
tively independent of external pressures. The lack of anything but self-imposed deadlines has had positive
and negative benefits.

1.2. Posix

Posix is a name for a family of open system standards based on Unix. There are a number of aspects
of Unix that have been standardized, from the basic system services at the system call and C library level to
applications and tools to system administration and management. The Posix family of standards has been
designated 1003 by the IEEE, and have been ratified as international standards by the ISO.

Before 1997, Posix consisted of a large number of separate standards, each considering a different
aspect of the Unix interface. The Posix Shell and Utilities standard was originally developed by IEEE
Working Group 1003.2 (POSIX.2), which published its final specification in 1992. This is the portion of
the standard most relevant to Bash. Since 1997, the Austin Group has taken over development of the Posix
standards. The current revision of the standard was published in 2008.

The portions of Posix of interest here concentrate on the command interpreter interface and on utility
programs commonly executed from the command line or by other programs.

There are four primary areas of work in the Shell and Utilities standard:

. Aspects of the shell’s syntax and command language. A number of special builtins such as c¢d
and exec are specified as part of the shell, since their functionality usually cannot be imple-
mented by a separate executable;

. A set of utilities to be called by shell scripts and applications. Examples are programs like
sed, tr, and awk. Utilities commonly implemented as shell builtins are described in this sec-
tion, such as test and kill. An expansion of this section’s scope, originally termed the User
Portability Extension, or UPE, has standardized interactive programs such as vi;

. A group of functional interfaces to services provided by the shell, such as the traditional sys-
tem() C library function. There are functions to perform shell word expansions, perform file-
name expansion (globbing), obtain values of Posix system configuration variables, retrieve val-
ues of environment variables (getenv ()), and other services;

. A suite of development utilities such as ¢99 (the Posix command to invoke the C compiler),
yacc, and make.

Bash is concerned with the aspects of the shell’s behavior defined by Posix. The shell command lan-
guage has of course been standardized, including the basic flow control and program execution constructs,

-

I/O redirection and pipelining, argument handling, variable expansion, and quoting. The special builtins,
which must be implemented as part of the shell to provide the desired functionality, are specified as being
part of the shell; examples of these are eval and export.

Other utilities appear in the sections of Posix not devoted to the shell which are commonly (and in
some cases must be) implemented as builtin commands, such as read and test. Posix also specifies aspects
of the shell’s interactive behavior, including job control and command line editing. Interestingly, only vi-
style line editing commands were standardized; emacs editing commands were left out due to objections.

There were certain areas in which Posix felt standardization was necessary, but no, or only one, exist-
ing implementation provided the proper behavior. The working group invented and standardized function-
ality in these areas, including reserved words (e.g., ‘!’, which negates the exit status of a pipeline), builtin
commands (command, which bypasses normal command lookup to skip shell functions), and word expan-
sions ($((...)), which treats the characters between the parentheses as an arithmetic expression and
evaluates it). There existed multiple incompatible implementations of the test builtin, which tests files for
type and other attributes and performs arithmetic and string comparisons. Posix considered none of these

correct, so the standard behavior was specified in terms of the number of arguments to the command.

While Posix includes much of what the shell has traditionally provided, some important things have
been omitted as being “beyond its scope.” There is, for instance, no mention of a difference between a login
shell and any other interactive shell (since Posix does not specify a login program). No fixed startup files
are defined, either - the standard does not mention a file named by a specific shell variable (ENV).

2. Shell Syntactic Units and Primitives

2.1. Shell Primitives

To the shell, there are basically three kinds of fokens, or syntactic units: reserved words, words, and
operators. Reserved words are those that have meaning to the shell and its programming language; usually
these words introduce flow control constructs, like if and while. Operators are composed of one or more
metacharacters: characters that have special meaning to the shell on their own, such as ‘I” and ‘>’. The rest
of the shell’s input consists of ordinary words, some of which have special meaning — assignment state-
ments or numbers, for instance — depending on where they appear on the command line.

2.2. Variables and Parameters

As in any programming language, shells provide variables: names to refer to stored data and operate
on it.

The shell provides basic user-settable variables and some builtin variables referred to as parameters.
Variable names are restricted to alphabetic characters, numbers, and the underscore (‘_’), and may not
begin with an underscore. Shell parameters do not follow that rule: parameter names consist of a special
character, such as ‘@’ or ‘!’, or a number, and cannot be assigned directly. Shell parameters generally
reflect some aspect of the shell’s internal state, and are set automatically or as a side effect of another opera-
tion.

Variable values are strings. Some values are treated specially depending on context; these will be
explained later.

Variables are assigned using statements of the form name=[value]. The value is optional; omitting it
assigns the empty string to name. If the value is supplied, the shell expands the value and assigns it to
name. The shell can perform different operations based on whether or not a variable is set, but assigning a
value is the only way to set a variable. Variables that have not been assigned a value, even if they have been
declared and given attributes, are referred to as “unset”.

A word beginning with a dollar sign (‘$’) introduces a variable or parameter reference. The word,
including the dollar sign, is replaced with the value of the named variable. The shell provides a rich set of
expansion operators, from simple value replacement to substitution or removal of portions of a variable’s
value matching a pattern.

There are provisions for local and global variables. By default, all variables are global. Any simple
command (the most familiar type of command — a command name and optional set of arguments and redi-
rections) may be prefixed by a set of assignment statements to cause those variables to exist only for that
command. The shell implements stored procedures, or shell functions, which can have function-local vari-
ables.

Variables can be minimally typed: in addition to simple string-valued variables, there are integers and
arrays. Integer-typed variables are treated as numbers: any string assigned to them is expanded as an arith-
metic expression and the result is assigned as the variable’s value. Arrays may be indexed or associative.
Indexed arrays use numbers as subscripts, where associative arrays use arbitrary strings. Array elements
are strings, which can be treated as integers if desired. Array elements may not be other arrays.

Bash uses hash tables to implement shell variables, and linked lists of these hash tables to implement
variable scoping. There are different variable scopes for shell function calls and temporary scopes for vari-
ables set by assignment statements preceding a command. When those assignment statements precede a
command that is built into the shell, for instance, the shell has to keep track of the correct order in which to
resolve variable references, and the linked scopes allow bash to do that. There can be a surprising number
of scopes to traverse depending on the execution nesting level.

2.3. The Shell Programming Language

A “simple” shell command, one with which most readers are most familiar, consists of a command
name, such as echo or c¢d, and a list of zero or more arguments and redirections. Redirections allow the
shell user to control the input to and output from invoked commands. As noted above, users can define
variables local to simple commands.

Reserved words introduce more complex shell commands. There are constructs common to any
high-level programming language: if-then-else, while, a loop that iterates over a list of values, a C-like
arithmetic for loop, constructs that allow the user to select from a set of alternative values, and conditional
constructs. These more complex commands allow the shell to execute a command or otherwise test a con-
dition and perform different operations based on the result, or execute commands multiple times.

One of the gifts Unix brought the computing world is the pipeline: a linear list of commands, in
which the output of one command in the list becomes the input of the next. Any shell construct can be used
in a pipeline, and it’s not uncommon to see pipelines in which a command feeds data to a a loop that is used
to process it.

Bash implements a facility that allows the standard input, standard output, and standard error streams
for a command to be redirected to another file or process when the command is invoked. Shell program-
mers can also use redirection to open and close files in the current shell environment.

Bash allows shell programs to be stored and used more than once. Shell functions and shell scripts
are both ways to name a group of commands and execute the group just like executing any other command.
Shell functions are declared using a special syntax and stored and executed in the same shell’s context; shell
scripts are created by putting commands into a file and executing a new instance of the shell to interpret
them. Shell functions share most of the execution context with the shell that calls them, but shell scripts,
since they are interpreted by a new shell invocation, share only what is passed between processes in the
environment.

The shell has no separate command language. All of the programming features are available when
the shell is running commands interactively read from the user’s terminal and when it is reading commands
from a script.

24. A Further Note

As you read further, keep in mind that the shell implements its features using only a few data struc-
tures: arrays, trees, singly-linked and doubly-linked lists, and hash tables. Nearly all of the shell constructs
are implemented using these primitives.

The basic data structure the shell uses to pass information from one stage to the next, and to operate
on data units within each processing stage, is the WORD_DESC:

-6-

typedef struct word_desc {

char *word; /* Zero terminated string. */

int flags; /* Flags associated with this word. */
} WORD DESC;

Words are combined into, for example, argument lists, using simple linked lists:

typedef struct word list {
struct word_list *next;
WORD_DESC *word;

} WORD LIST;

WORD_LISTs are pervasive throughout the shell. A simple command is a word list, the result of expansion
is a word list, and the builtin commands take word lists of arguments.

3. Input Processing

The first stage of the bash processing pipeline is input processing: taking characters from the terminal
or a file, breaking them into lines, and passing the lines to the shell parser to transform into commands.
The lines are, as you would expect from experience, are sequences of characters terminated by newlines.

3.1. Readline and Command Line Editing

Bash reads input from the terminal when interactive, and from the script file specified as an argument
otherwise. When interactive, bash allows the user to edit command lines as they are typed in, using famil-
iar key sequences and editing commands similar to the Unix emacs and vi editors.

Readline is the library bash uses to implement command line editing. The readline library provides a
set of functions allowing users to edit command lines, functions to save command lines as they are entered
and recall previous commands, and to perform csh-like history expansion. Bash is readline’s primary
“client,” and they are developed together, but there is no bash-specific code in readline. Many other
projects have adopted readline to provide a terminal-based line editing interface. Gdb and Python are two
of the most well-known, but dozens of applications use the Readline interface to read input.

Readline is very extensible: applications may implement their own editing commands and either bind
them to key sequences or make them available for users to do so. For instance, readline contains a set of
commands that move backward and forward in the command line by words, using readline’s idea of word
boundaries. While these suffice for most applications, and most cases, Bash augments them with an addi-
tional set that uses shell metacharacters as word boundaries, as the bash parser treats them.

3.1.1. Editing Modes

Readline provides editing modes: sets of key bindings and variables that force readline to resemble
the emacs or vi editors. By default, readline starts in emacs editing mode.

3.1.2. Prompting

Bash allows users great flexibility in customizing the readline prompt. It supports a number of back-
slash-escaped character sequences that expand to everything from the current username to an arbitrary date
and time string. Bash, and readline, provide a way to mark a sequence of characters in the prompt as
“invisible” — taking up no screen space — allowing users to insert terminal escape sequences into the
prompt. Many multi-colored prompts and prompts that write to a window’s title bar have resulted. This
single feature proved the source of many redisplay bugs.

3.1.3. Key Bindings and Macros

Readline allows arbitrary key bindings. Users may bind key sequences of unlimited length to any of
a large number of readline commands. Readline has commands to move the cursor around the line, insert
and remove text, retrieving previous lines, and completing partially-typed words. Users may define macros,
which are strings of characters that are inserted into the line in response to a key sequence, using the same

-

syntax as key bindings. Macros afford readline users a simple string substitution and shorthand facility.

3.14. Command History

Readline provides access to the command history, the set of previously-typed command lines. There
are bindable readline commands to move back and forth through the history, search for words in the history
list, and save and restore the history list to and from a file. There are bindable commands and options to
perform csh-like history expansion (“bang history”). Bash augments the basic readline set with additional
bindable commands that search the history, expand the command line in different ways, and expose the his-
tory to the word completion facilities. There are two builtin bash commands to search for and re-execute
commands from the history and to manipulate the history file.

3.1.5. Word Completion

Readline provides a very general facility to complete partially-typed words. Most completion is
application-specific: bash augments the base readline set with functions to complete command and variable
names, hostnames, usernames, and even complete against words from the command history. Other applica-
tions using readline do the same thing: gdb, for instance, has functions to complete variable and function
names from the symbol table of the program it’s debugging.

Bash implements a per-command programmable word completion mechanism using the basic read-
line structure. In addition to a large number of built-in completions (command names, shell function
names, variable names, builtin command names, etc.), programmable completion allows a user to write
shell functions to generate the list of possible completions for a given word. This flexibility has resulted in
the development of a large set of bash completions, a number of which are distributed as a separate free
software project.

3.1.6. Readline Structure

Readline is structured as a basic read/dispatch/execute/redisplay loop. It reads characters from the
keyboard using read () or equivalent, or obtains input from a macro. Each character is used as an index
into a keymap, or dispatch table. Though indexed by a single eight-bit character, the contents of each ele-
ment of the keymap can be several things. The characters can resolve to additional keymaps, which is how
multiple-character key sequences are possible. Resolving to a readline command, such as beginning-of-
line, causes that command to be executed. It’s also possible to bind a key sequence to a command while
simultaneously binding subsequences to different commands (a relatively recently-added feature); there is a
special index into a keymap to indicate that this is done. Binding a key sequence to a macro provides a
great deal of flexibility, from the ability to insert arbitrary strings into a command line to creating keyboard
shortcuts for complex editing sequences. Readline stores each character that is bound to the self-insert
command in the editing buffer, which when displayed may occupy one or more lines on the screen.

Readline manages only character buffers and strings using C chars, and builds multibyte characters
out of them if necessary. It does not use wchar_t internally for both speed and storage reasons, and
because the editing code existed before multibyte character support became widespread. When in a locale
that supports multibyte characters, readline automatically reads an entire multibyte character and inserts it
into the editing buffer. It’s possible to bind multibyte characters to editing commands, but one has to bind
such a character as a key sequence -- possible, but difficult and usually not wanted. The existing emacs and
vi command sets do not use multibyte characters, for instance.

Once a key sequence finally resolves to an editing command, whether that results in characters being
inserted into the buffer, the editing position being moved, or the line being partially or completely replaced,
readline updates the terminal display to reflect the results. Some bindable editing commands, such as those
that modify the history file, do not cause any change to the contents of the editing buffer.

Updating the terminal display, while seemingingly simple, is quite involved. Readline has to keep
track of three things: the current contents of the buffer of characters displayed on the screen, the updated
contents of that display buffer, and the actual characters displayed. In the presence of multibyte characters,
the characters displayed do not exactly match the buffer, and the redisplay engine must take that into
account. When redisplaying, readline must compare the current display buffer’s contents with the updated

buffer, figure out the differences, and decide how to most efficiently modify the display to reflect the
updated buffer. This problem has been the subject of considerable research through the years (the string-to-
string correction problem). Readline’s approach is to identify the beginning and end of the portion of the
buffer that differs, compute the cost of updating just that portion, including moving the cursor backward
and forward (e.g., will it take more effort to issue terminal commands to delete characters and then insert
new ones than to simply overwrite the current screen contents?), perform the lowest-cost update, then clean
up by removing any characters remaining at the end of the line if necessary and position the cursor in the
correct spot.

The redisplay engine is without question the one piece of readline that has been modified most heav-
ily. Originally written by Brian Fox and Paul Placeway, it’s safe to say that very little of the code has
remained unexamined, if not unchanged. Most of the changes have been to add functionality; most signifi-
cantly, the ability to have non-displaying characters in the prompt and to cope with characters that take up
more than a single byte. There have also been significant efficiency improvements.

Readline returns the contents of the editing buffer to the calling application, which is then responsible
for saving the possibly-modified results in the history list.

3.1.7. Applications Extending Readline

Just as readline offers users a variety of ways to customize and extend readline’s default behavior, it
provides a number of mechanisms for applications to extend its default feature set.

First, bindable readline functions accept a standard set of arguments and return a specified set of
results, making it easy for applications to extend readline with application-specific functions. Bash, for
instance, adds more than thirty bindable commands, from bash-specific word completions to interfaces to
shell builtin commands.

The second way readline allows applications to modify its behavior is through the pervasive use of
pointers to hook functions with well-known names and calling interfaces. Applications can replace some
portions of readline’s internals, interpose functionality “in front” of readline, and perform application-spe-
cific transformations. For an example of the first, applications are allowed to replace readline’s default
input, redisplay, and terminal initialization and restore functions. The most common example of function
interposition is an application attempting word completion before readline’s default. Most applications
using readline implement application-specific word completion using this hook function. The final example
is also most commonly used in completion: there is a set of functions that applications may use to trans-
form words (e.g., removing quoting characters from filenames or changing character sets) when trying to
match them against file system entries during word completion.

Much of readline’s strength and consequent popularity stems from the ease with which it can be
extended.

3.2. Non-interactive Input Processing

When the shell is not using readline, it uses either stdio or its own buffered input routines to obtain
input. The bash buffered input package is preferable to stdio when the shell is not interactive because of the
somewhat peculiar restrictions Posix imposes on input consumption: the shell must consume only the input
necessary to parse a command and leave the rest for executed programs. This is particularly important
when the shell is reading a script from the standard input. The shell is allowed to buffer input as much as it
wants, as long as it is able to roll the file offset back to just after the last character the parser consumes. As
a practical matter, this means that the shell must read scripts a character at a time when reading from non-
seekable devices such as pipes, but may buffer as many characters as it likes when reading from files.

These idiosyncracies aside, the output of the non-interactive input portion of shell processing is the
same as readline: a buffer of characters terminated by a newline.

3.3. Multibyte Characters

Multibyte character processing was added to the shell a long time after its initial implementation, and
it was done in a way designed to minimize its impact on the existing code. When in a locale that supports
multibyte characters, the shell stores its input in a buffer of bytes (C chars), but treats these bytes as

potentially multibyte characters. Readline understands how to display multibyte characters (the key is
knowing how many screen positions a multibyte character occupies, and how many bytes to consume from
a buffer when displaying a character on the screen), how to move forward and backward in the line a char-
acter at a time, as opposed to a byte at a time, and so on. Other than that, multibyte characters don’t have
much effect on shell input processing. Other parts of the shell, described later, need to be aware of multi-
byte characters and take them into account when processing their input.

4. Parsing

Parsing is the process of taking lines of input read from the terminal or obtained from readline and
transforming them into commands that can be executed.

The word is the basic unit on which the parser operates. Words are sequences of characters separated
by metacharacters. Metacharacters are simple separators, like spaces and tabs, or characters that are spe-
cial to the shell language, like semicolons and ampersands. The initial job of the parsing engine is lexical
analysis: to separate the stream of characters into words and apply meaning to the result.

One historical problem with the shell, as Tom Duff said in his paper about rc, the Plan 9 shell, is that
nobody really knows what the Bourne shell grammar is. The original grammar as published in Bourne’s
paper describing the Seventh Edition version of the shell does not even allow the command who | wec.
Traditional shell parsers are built as a set of functions, each interpreting an individual construct in a recur-
sive-descent fashion. However, the functions implementing the constructs in the Bourne shell each took a
flag that modified their behavior in subtle context-dependent ways. The Posix shell committee deserves
significant credit for finally publishing a definitive grammar for a Unix shell, albeit one that has plenty of
context dependencies. That grammar isn’t without its problems — it disallows some constructs that histori-
cal Bourne shell parsers have accepted without error — but it’s the best we have.

The Bash parser is derived from an early version of the Posix grammar, and is, as far as I know, the
only Bourne-style shell parser implemented using Yacc or Bison. This has presented its own set of difficul-
ties — the shell grammar isn’t really well-suited to yacc-style parsing and requires some complicated lexi-
cal analysis and a lot of cooperation between the parser and lexical analyzer.

In any event, the lexical analyzer takes lines of input from readline or another source, breaks them
into tokens at metacharacters, identifies the tokens based on context, and passes them on to the parser to be
assembled into statements and commands. There is a lot of context involved — for instance, the word
“for” can be a reserved word, an identifier, part of an assignment statement, or other word, and the follow-
ing is a perfectly valid command:

for for in for; do for=for; done; echo $for

that displays for.

At this point, a short digression about aliasing is in order. Bash allows the first word of a simple
command to be replaced with arbitrary text using aliases. This facility is very versatile: one may use it to
create mnemonics for command names, to expand a single word to a complete command name and set of
arguments, and to ensure that a command is always invoked with a pre-defined set of options. Since it’s
completely lexical, it can even be used (or abused) to change the shell grammar: it’s possible to write an
alias repeat that implements a compound command (repeat N command) that bash doesn’t provide. The
bash parser implements aliasing completely in the lexical phase, though the parser has to inform the ana-
lyzer when alias expansion is permitted.

Like many programming languages, the shell allows characters to be guoted to remove their special
meaning. Quoting is the only way to allow metacharacters such as ‘&’ to appear in a command. There are
three types of quoting, each of which is slightly different and permits slightly different interpretations of the
quoted text: the backslash, which escapes the next character, single quotes, which prevent interpretation of
all enclosed characters, and double quotes, which prevent some interpretation but allow certain word expan-
sions (and treats backslashes differently). The lexical analyzer interprets quoted characters and strings and
prevents their being recognized by the parser as reserved words or metacharacters.

There are two interesting special cases of quoting: $'...' and $"...". The first is similar to single
quotes, but expands backslash-escaped characters in the same fashion as ANSI C strings. The $"..."

-10-

construct allows the characters between the double quotes to be translated using standard internationaliza-
tion functions like gettext. The former is widely used; the latter, perhaps because there are few good
examples or use cases, less so.

The rest of the interface between the parser and lexical analyzer is straightforward. The parser
encodes a certain amount of state and shares it with the analyzer to allow the sort of context-dependent
analysis the grammar requires. For example, the lexical analyzer categorizes words according to the token
type: reserved word (in the appropriate context), word, assignment statement, and so on. In order to do this,
the parser has to tell it something about how far it has progressed parsing a command, whether it is process-
ing a here-document, whether it’s in a case statement or a conditional command, or processing an extended
shell pattern or compound assignment statement. A few examples will illustrate the various uses.

. The lexical analyzer flags assignment statements specially, since foo=4 echo bar is differ-
ent from echo bar foo=4, and the parser can tell it when an assignment statement may be
recognized.

. When parsing a conditional command, bash allows extended shell patterns and regular expres-

sions, depending on the operator (== or =7). Bash doesn’t require the metacharacters in the
patterns be quoted, so the parser has to force the lexical analyzer to treat these metacharacters
as part of the pattern rather than their normal interpretation as word separators.

. In most cases, a semicolon terminates a command or list, but while the parser is in the middle
of the C-like arithmetic for command or a here-document, it has no special meaning.

. The parser knows when it is in a position to begin a command. It can tell the lexical analyzer
this so the analyzer can perform alias expansion (and the analyzer can tell itself whether the
next word is subject to alias expansion) or flag words that are well-formed shell assignment
statements as such so they can undergo appropriate expansion later.

Almost all of the special cases are encapsulated into a single function: the aptly-named spe-
cial case_tokens().

The parser’s remaining work is relatively straightforward as well. Reserved words result in the cre-
ation of C objects representing the particular shell construct; the words returned by lexical analysis are con-
verted to word lists, redirections (which are represented as simple lists of objects describing the required
actions), and other elements. The objects are arranged in trees and lists to represent familiar idioms like a;
b; cand

for i in 1 2 3 45 6 7 8 9 10; do

j=10 s=
while ["$j" -ge "$i"]; do
S=“$S $jll
j=s$((3 - 1))
done

printf "%s0 "$s"
done

The structure is versatile enough to represent constructs like shell functions and coprocesses that save
a group of commands for future execution.

The parser implementation, even when using improved parser generators like bison, was the source
of the longest-lived incompatibility with the Posix standard. One of the “new” features Posix standardized
was the $(...) form of command substitution, an improvement over the original ~ ...~ form that per-
mits easier nesting and more straightforward quoting. Posix requires that the command within the paren-
theses be parsed while it’s being read, so that the command itself determines when the closing parenthesis
is reached. It took a very long time and some interesting changes to the bison grammar before bash was
able to implement this sort of on-the-fly parsing.

Much of the work to recognize the end of the command substitution during the parsing stage is
encapsulated into a single function (parse_comsub()), which knows an uncomfortable amount of shell
syntax and duplicates rather more of the token-reading code than is optimal. This function has to know

-11-

about here documents, shell comments, metacharacters and word boundaries, quoting, and when reserved
words are acceptable (so it knows when it’s in a case statement): it took a while to get that right. When
expanding a command substitution during word expansion, bash uses the parser to find the correct end of
the construct. This is similar to turning a string into a command for eval or bash -c, but in this case the
command isn’t terminated by the end of the string. In order to make this work, the parser must recognize a
right parenthesis as a valid command terminator, which leads to special cases in a number of grammar pro-
ductions and requires the lexical analyzer to flag a right parenthesis (in the appropriate context) as denoting
EOF. The parser also has to save and restore parser state before recursively invoking yyparse (), since a
command substitution can be parsed and executed as part of expanding a prompt string in the middle of
reading a command. Since the input functions implement read-ahead, this function must finally take care
of rewinding the bash input pointer to the right spot, whether bash is reading input from a string, a file, or
the terminal using readline. This is important not only so that input is not lost, but so the command substi-
tution expansion functions construct the correct string for execution.

The problems posed by programmable word completion, which allow arbitrary commands to be
executed while parsing another command, are similar, and solved by saving and restoring parser state
around invocations.

Quoting is also a source of incompatibility and debate. Twenty years after the publication of the first
Posix shell standard, members of the standards working group are still debating the proper behavior of
obscure quoting. As before, the Bourne shell is no help other than as a reference implementation to observe
behavior.

The parser returns a single C structure representing a command (which, in the case of compound
commands like loops may include other commands in turn) and passes it to the next stage of the shell’s
operation: word expansion. The command structure is composed of command objects and lists of words.
Most of the word lists are subject to various transformations, depending on their context, as explained in the
following sections.

5. Word Expansions

After parsing, but before execution, many of the words produced by the parsing stage are subjected to
one or more word expansions. As noted above, shell quoting not only removes special meaning from char-
acters, but inhibits some or all word expansion.

The word expansions operate on the words or word lists produced by the parser, and result in trans-
formed word lists. In many cases, the expansions transform one word into several, as explained below.
There are only a few cases in which a word is transformed into multiple words via the word expansions
(e.g., the expansion of "$@" into a list of words constructed from the shell’s positional parameters). Word
splitting, described later in this section, is the mechanism by which bash creates multiple words from one.

The shell’s traditional role is to perform what is essentially macro expansion and execute commands.
There is a rich set of word expansions available, which allow the shell programmer a great deal of flexibil-
ity — sometimes arguably too much.

I won’t spend a lot of time on the basic expansions, since they’re so familiar. The ‘$’ character intro-
duces a word expansion. Most word expansions specify a shell variable name, wh