21 May 2013 10:27 a.m.

| TEX for the Impatient No 1

TEX for the Impatient

21 May 2013 10:27 a.m.

TEX for the Impatient NO 2

21 May 2013 10:27 a.m.

TEX for the Impatient No 3

21 May 2013 10:27 a.m.

TEX for the Impatient

‘TEX’ is a trademark of the American Mathematical Society.
‘METAFONT? is a trademark of Addison-Wesley Publishing Company.

This book, TEX for the Impatient, contains both tutorial and reference
information on all features of both plain and primitive TEX.

Copyright (© 2003, 2013 Paul W. Abrahams, Kathryn A. Hargreaves,
and Karl Berry.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover texts, and with no Back-Cover
texts. A copy of the license is included in the chapter entitled “GNU Free
Documentation License”.

Under the terms of the GFDL, anyone is allowed to modify and redis-
tribute this material, and it is our hope that others will find it useful to
do so. That includes translations, either to other natural languages, or
to other computer source or output formats.

In our interpretation of the GFDL, you may also extract text from this
book for use in a new document, as long as the new document is also
under the GFDL, and as long as proper credit is given (as provided for
in the license).

N©o 4

21 May 2013 10:27 a.m.

TEX for the Impatient NO 5

For Jodi.
—P.W.A.

In memory of my father,
who had faith in me.
—K.A.H.

For Dan.
—K.B.

21 May 2013 10:27 a.m.

TEX for the Impatient N©° 6

21 May 2013 10:27 a.m.

TEX for the Impatient

Preface

Donald Knuth’s TEX, a computerized typesetting system, provides nearly
everything needed for high-quality typesetting of mathematical notations
as well as of ordinary text. It is particularly notable for its flexibility, its
superb hyphenation, and its ability to choose aesthetically satisfying line
breaks. Because of its extraordinary capabilities, TEX has become the
leading typesetting system for mathematics, science, and engineering and
has been adopted as a standard by the American Mathematical Society.
A companion program, METAFONT, can construct arbitrary letterforms
including, in particular, any symbols that might be needed in mathemat-
ics. Both TEX and METAFONT are widely available within the scientific
and engineering community and have been implemented on a variety of
computers. TEX isn’t perfect—it lacks integrated support for graphics,
and some effects such as revision bars are very difficult to produce—but
these drawbacks are far outweighed by its advantages.

TEX for the Impatient is intended to serve scientists, mathematicians,
and technical typists for whom TEX is a useful tool rather than a primary
interest, as well as computer people who have a strong interest in TEX
for its own sake. We also intend it to serve both newcomers to TEX and
those who are already familiar with TEX. We assume that our readers
are comfortable working with computers and that they want to get the
information they need as quickly as possible. Our aim is to provide that
information clearly, concisely, and accessibly.

This book therefore provides a bright searchlight, a stout walking-stick,
and detailed maps for exploring and using TEX. It will enable you to mas-
ter TEX at a rapid pace through inquiry and experiment, but it will not
lead you by the hand through the entire TEX system. Our approach is to
provide you with a handbook for TEX that makes it easy for you to retrieve
whatever information you need. We explain both the full repertoire of TEX
commands and the concepts that underlie them. You won’t have to waste
your time plowing through material that you neither need nor want.

In the early sections we also provide you with enough orientation so
that you can get started if you haven’t used TEX before. We assume that

No 7

21 May 2013 10:27 a.m.

TEX for the Impatient

viii Preface

you have access to a TEX implementation and that you know how to use
a text editor, but we don’t assume much else about your background.
Because this book is organized for ready reference, you’ll continue to find
it useful as you become more familiar with TEX. If you prefer to start
with a carefully guided tour, we recommend that you first read Knuth’s
The TgXbook (see page 18 for a citation), passing over the “dangerous
bend” sections, and then return to this book for additional information
and for reference as you start to use TEX. (The dangerous bend sections
of The TgXbook cover advanced topics.)

The structure of TEX is really quite simple: a TEX input document
consists of ordinary text interspersed with commands that give TEX fur-
ther instructions on how to typeset your document. Things like math
formulas contain many such commands, while expository text contains
relatively few of them.

The time-consuming part of learning TEX is learning the commands
and the concepts underlying their descriptions. Thus we’ve devoted most
of the book to defining and explaining the commands and the concepts.
We've also provided examples showing TEX typeset output and the cor-
responding input, hints on solving common problems, information about
error messages, and so forth. We’ve supplied extensive cross-references
by page number and a complete index.

We’ve arranged the descriptions of the commands so that you can look
them up either by function or alphabetically. The functional arrangement
is what you need when you know what you want to do but you don’t
know what command might do it for you. The alphabetical arrangement
is what you need when you know the name of a command but you don’t
know exactly what it does.

We must caution you that we haven’t tried to provide a complete def-
inition of TEX. For that you'll need The TEXbook, which is the original
source of information on TEX. The TgXbook also contains a lot of infor-
mation about the fine points of using TEX, particularly on the subject of
composing math formulas. We recommend it highly.

In 1989 Knuth made a major revision to TEX in order to adapt it to
8-bit character sets, needed to support typesetting for languages other
than English. The description of TEX in this book incorporates that
revision (see p. 18).

You may be using a specialized form of TEX such as I¥TEX or ApS-TEX
(see p.18). Although these specialized forms are self-contained, you may
still want to use some of the facilities of TEX itself now and then in order to
gain the finer control that only TEX can provide. This book can help you
to learn what you need to know about those facilities without having to
learn about a lot of other things that you aren’t interested in.

Two of us (K.A.H. and K.B.) were generously supported by the Univer-
sity of Massachusetts at Boston during the preparation of this book. In

No 8

21 May 2013 10:27 a.m.

TEX for the Impatient

Preface ix

particular, Rick Martin kept the machines running, and Robert A. Morris
and Betty O’Neil made the machines available. Paul English of Interleaf
helped us produce proofs for a cover design.

We wish to thank the reviewers of our book: Richard Furuta of the
University of Maryland, John Gourlay of Arbortext, Inc., Jill Carter
Knuth, and Richard Rubinstein of the Digital Equipment Corporation.
We took to heart their perceptive and unsparing criticisms of the original
manuscript, and the book has benefitted greatly from their insights.

We are particularly grateful to our editor, Peter Gordon of Addison-
Wesley. This book was really his idea, and throughout its development
he has been a source of encouragement and valuable advice. We thank
his assistant at Addison-Wesley, Helen Goldstein, for her help in so many
ways, and Loren Stevens of Addison-Wesley for her skill and energy in
shepherding this book through the production process. Were it not for
our copyeditor, Janice Byer, a number of small but irritating errors would
have remained in this book. We appreciate her sensitivity and taste
in correcting what needed to be corrected while leaving what did not
need to be corrected alone. Finally, we wish to thank Jim Byrnes of
Prometheus Inc. for making this collaboration possible by introducing
us to each other.

Deerfield, Massachusetts P.W.A.
Manomet, Massachusetts K.A.H., K.B.

Preface to the free edition: This book was originally published in 1990
by Addison-Wesley. In 2003, it was declared out of print and Addison-
Wesley generously reverted all rights to us, the authors. We decided to
make the book available in source form, under the GNU Free Documen-
tation License, as our way of supporting the community which supported
the book in the first place. See the copyright page for more information
on the licensing.

The illustrations which were part of the original book are not included
here. Some of the fonts have also been changed; now, only freely-available
fonts are used. We left the cropmarks and galley information on the pages,
to serve as identification. An old version of Eplain was used to produce
it; see the eplain.tex file for details.

We don’t plan to make any further changes or additions to the book
ourselves, except for correction of any outright errors reported to us, and
perhaps inclusion of the illustrations.

Our distribution of the book is at ftp://tug.org/tex/impatient.
You can reach us by email at impatient@tug.org.

No 9

21 May 2013 10:27 a.m.

TEX for the Impatient N©° 10

© 00 N O Ot k= W N

S S
w N = O

TEX for the Impatient

= = = = = = = = =

21 May 2013 10:27a.m.

Brief
contents

Using this book w]
Using TEX 7
Examples n 21
Concepts =43

Commands for composing paragraphs = 97
Commands for composing pages = 133

Commands for horizontal and vertical modes = 153
Commands for composing math formulas = 187
Commands for general operations =221

Tips and techniques = 265

Making sense of error messages = 283
A compendium of useful macros = 201
Capsule summary of commands =313

GNU Free Documentation License m 341
Index = 353

NO 11

TEX for the Impatient

Contents

1 \ Using this book ml

2

3

\

Syntactic conventions o2

Descriptions of the commands © 3

Using TpX n7

Turning input into ink o7
Programs and files you need -7
Running TEX -9

Preparing an input file 010
Commands and control sequences - 10
Arguments - 11
Parameters 12
Spaces 12
Comments - 13
Punctuation -13
Special characters - 15
Groups -15
Math formulas - 16

How TgX works ©16

New TgX versus old TgpX 018

Resources o118

Examples m 2]

Entering simple text o 22
Indentation ©O24
Fonts and special characters o 26

Interline spacing 0 28

21 May 2013

10:27 a.m.

NO 12

Contents

4

5

6

TEX for the Impatient

21 May 2013

Spacing, rules, and boxes 0 30
Odds and ends 032

Using fonts from other sources 0 34
A ruled table © 36

Typesetting mathematics o 38

More mathematics © 40

Concepts =43

Commands for composing paragraphs m 97

Characters and accents 097
Letters and ligatures for European alphabets - 97
Special symbols - 98
Arbitrary characters - 99
Accents - 100
Defeating boundary ligatures - 101

Selecting fonts 0102
Particular fonts - 102
Type styles -103

Uppercase and lowercase 1103
Interword spacing © 104
Centering and justifying lines 0 108

Shaping paragraphs © 110
Starting, ending, and indenting paragraphs - 110
Shaping entire paragraphs -114

Line breaks 0120
Encouraging or discouraging line breaks - 120
Line breaking parameters -123
Hyphenation -126

Section headings, lists, and theorems © 129

Commands for composing pages =133

Interline and interparagraph spaces © 133

Page breaks © 136
Encouraging or discouraging page breaks -136
Page breaking parameters - 138

10:27 a.m.

xiii

N© 13

21 May 2013 10:27 a.m.

TEX for the Impatient

xiv

7

8

Page layout © 140
Page description parameters - 140
Page numbers - 142
Header and footer lines - 143
Marks -144

Insertions 0145
Footnotes - 145
General insertions - 146

Modifying the output routine D 148
Splitting vertical lists 0 149

Commands for horizontal and vertical modes

Producing space 0 153
Fixed-width horizontal space -153
Fixed-length vertical space -154
Variable-size space 155

Manipulating boxes © 160
Constructing hboxes and vboxes - 160
Setting and retrieving the contents of boxes - 164
Shifting boxes -166
Dimensions of box registers - 167
Struts, phantoms, and empty boxes - 167
Parameters pertaining to malformed boxes - 170

Retrieving the last item from a list o171
Rules and leaders o172

Alignments © 176
Tabbing alignments -176
General alignments - 178

Commands for composing math formulas

Simple parts of formulas © 187
Greek letters - 187
Miscellaneous ordinary math symbols - 188
Binary operations -189
Relations - 190
Left and right delimiters - 191
Arrows -192
Named mathematical functions -193
Large operators -194
Punctuation -196

Contents

=153

m 187

N© 14

Contents

9

TEX for the Impatient

21 May 2013

Superscripts and subscripts 0197
Selecting and using styles - 198

Compound symbols © 199
Math accents - 199
Fractions and other stacking operations - 200
Dots -203
Delimiters - 204
Matrices - 205
Roots and radicals - 206

Equation numbers o207

Multiline displays © 208

Fonts in math formulas © 209

Constructing math symbols o 211
Making delimiters bigger -211
Parts of large symbols -211

Aligning parts of a formula © 212
Aligning accents - 212
Aligning material vertically - 213

Producing spaces 0214
Fixed-width math spaces -214
Variable-width math spaces -215

Spacing parameters for displays -216
Other spacing parameters for math - 217

Categorizing math constructs © 218

Special actions for math formulas © 218

Commands for general operations m 221

Naming and modifying fonts © 221

Converting information to tokens o 224
Numbers - 224
Environmental information -224
Values of variables - 226

Grouping o227

Macros o230
Defining macros - 230
Other definitions - 232
Controlling expansion - 233
Conditional tests -235
Repeated actions -240
Doing nothing - 241

10:27 a.m.

XV

N© 15

xvi

10

21 May 2013

TEX for the Impatient

Registers o242
Using registers -242
Naming and reserving registers, etc. 244
Doing arithmetic in registers -245

Ending the job 0 246

Input and output o 247
Operations on input files -247
Operations on output files - 249
Interpreting input characters -251

Controlling interaction with TpX © 252

Diagnostic aids 10253
Displaying internal data -253
Specifying what is traced - 256
Sending messages - 261

Initializing TpX o 263

Tips and techniques m 265

Correcting bad page breaks ©O 265
Preserving the end of a page © 267

Leaving space at the top of a page 10O 267
Correcting bad line breaks 0 268

Correcting overfull or underfull bores o0 268
Recovering lost interword spaces © 270

Avoiding unwanted interword spaces o 270

Avoiding excess space around a display © 271

Avoiding excess space after a paragraph o271

Changing the paragraph shape © 272
Putting paragraphs into a boxr © 272
Drawing lines © 273

Creating multiline headers or footers o274
Finding mismatched braces 0275

Setting dimensions 0276

Creating composite fonts 0276
Reproducing text verbatim o 277

Using outer macros o 279

Changing category codes o 280

Making macro files more readable 10 281

10:27 a.m.

Contents

N© 16

TEX for the Impatient

Contents

11\

12\

13\

21 May 2013

Making sense of error messages m 283

A compendium of useful macros = 291
Preliminaries © 291
Displays © 295

Time of day © 297

Lists 0298

Verbatim listing o 300
Tables of contents © 301
Cross-references 0 302
Environments o304
Justification o 306
Tables © 307

Footnotes o 309

Double columns o 309

Finishing up ©311

Capsule summary of commands = 313

GNU Free Documentation License m 341

PREAMBLE © 341

APPLICABILITY AND DEFINITIONS © 342
VERBATIM COPYING o343

COPYING IN QUANTITY o344
MODIFICATIONS 1345

COMBINING DOCUMENTS © 347
COLLECTIONS OF DOCUMENTS @& 347
AGGREGATION WITH INDEPENDENT WORKS
TRANSLATION o 348

TERMINATION o348

FUTURE REVISIONS OF THIS LICENSE © 349

Index = 353

10:27 a.m.

xvil

o 347

No 17

21 May 2013 10:27 a.m.

TEX for the Impatient N© 18

21 May 2013 10:27a.m.

TEX for the Impatient NO© 19

Read this first

If you're new to TEX:

= Read Sections 1-2 first.

» Look at the examples in Section 3 for things that resemble what you
want to do. Look up any related commands in “Capsule summary
of commands”, Section 13. Use the page references there to find
the more complete descriptions of those commands and others that
are similar.

= Look up unfamiliar words in “Concepts”, Section 4, using the list on
the back cover of the book to find the explanation quickly.

» Experiment and explore.

If you're already familiar with TgX, or if you're editing or otherwise mod-
ifying a TEX document that someone else has created:

» For a quick reminder of what a command does, look in Section 13,
“Capsule summary of commands”. It’s alphabetized and has page
references for more complete descriptions of the commands.

= Use the functional groupings of command descriptions to find those
related to a particular command that you already know, or to find a
command that serves a particular purpose.

= Use Section 4, “Concepts”, to get an explanation of any concept that
you don’t understand, or need to understand more precisely, or have
forgotten. Use the list on the inside back cover of the book to find a
concept quickly.

21 May 2013 10:27 a.m.

TEX for the Impatient N©° 20

21 May 2013 10:27a.m.

TEX for the Impatient

1 | Using this book

This book is a do-it-yourself guide and handbook for TEX. Here in this
section we tell you how to use the book to maximum advantage.

We recommend that you first either read or skim in sequence Sections
1 through 3, which tell you what you need to know in order to get started
using TEX. If you've already had experience using TEX, it will still be
helpful to know what kinds of information are in these sections of the
book. Sections 4-10, which occupy most of the rest of the book, are
designed to be accessed randomly. Nevertheless, if you’re the kind of
person who likes to read reference manuals, you’ll find that it is possible
to proceed sequentially if you're willing to take a lot of detours at first.

In Section 2, “Using TEX”, we explain how to produce a TEX document
from a TEX input file. We also describe the conventions for preparing
that input file, explain a little about how TEX works, and tell you about
additional resources that are available. Reading this section will help you
understand the examples in the next section.

Section 3, “Examples”, contains a sequence of examples that illustrate
the use of TEX. Each example consists of a page of output together with
the input that we used to create it. These examples will orient you and
help you locate the more detailed material that you’ll need as you go. By
seeing which commands are used in the input, you’ll know where to look
for more detailed information on how to achieve the effects shown in the
output. The examples can also serve as models for simple documents,
although we must caution you that because we’ve tried to pack a variety
of TEX commands into a small number of pages, the examples are not
necessarily illustrations of good or complete document design.

As you read the explanation of a command, you may encounter some
unfamiliar technical terms. In Section 4, “Concepts”, we define and ex-
plain these terms. We also discuss other topics that aren’t covered else-

No 21

21 May 2013 10:27 a.m.

TEX for the Impatient NO 22

2 Using this book \ §1

where in the book. The inside back cover of the book contains a list of
all the concepts and the pages where they are described. We suggest that
you make a copy of this list and keep it nearby so that you’ll be able to
identify and look up an unfamiliar concept immediately.

TEX’s commands are its primary vocabulary, and the largest part of
this book is devoted to explaining them. In Sections 5 through 9 we
describe the commands. You'll find general information about the com-
mand descriptions on page 3. The command descriptions are arranged
functionally, rather like a thesaurus, so if you know what you want to do
but you don’t know which command does it for you, you can use the ta-
ble of contents to guide you to the right group of commands. Commands
that we think are both particularly useful and easy to understand are
indicated with a pointing hand ().

Section 13, “Capsule summary of commands”, is a specialized index
that complements the more complete descriptions in Sections 5-9. It lists
TEX’s commands alphabetically, with a brief explanation of each com-
mand and a reference to the page where it is described more completely.
The capsule summary will help you when you just want a quick reminder
of what a command does.

TEX is a complex program that occasionally works its will in mysterious
ways. In Section 10, “Tips and techniques”, we provide advice on solving
a variety of specific problems that you may encounter from time to time.
And if you're stumped by TEX’s error messages, you’ll find succor in
Section 11, “Making sense of error messages”.

The gray tabs on the side of the book will help you locate parts of the
book quickly. They divide the book into the following major parts:

1) general explanations and examples
) concepts
) descriptions of commands (five shorter tabs)

=W N

) advice, error messages, and the eplain.tex macros

(¥4

) capsule summary of commands

6) index

In many places we have provided page references to The TEXbook
(see page 18 for a citation). These references apply to the seventeenth
edition of The TEXbook. For other editions, some references may be off
by a page or two.

Syntactic conventions

In any book about preparing input for a computer, it’s necessary to in-
dicate clearly the literal characters that should be typed and to distin-
guish those characters from the explanatory text. We use the Computer

21 May 2013 10:27a.m.

TEX for the Impatient NO 23

Descriptions of the commands 3

Modern typewriter font for literal input like this, and also for the
names of TEX commands. When there’s any possibility of confusion, we
enclose TEX input in single quotation marks, ‘like this’. However, we
occasionally use parentheses when we're indicating single characters such
as () (you can see why).

For the sake of your eyes we usually just put spaces where you should
put spaces. In some places where we need to emphasize the space, how-
ever, we use a ‘|,’ character to indicate it. Naturally enough, this character
is called a wisible space.

Descriptions of the commands

Sections 5-9 contain a description of what nearly every TEX command
does. Both the primitive commands and those of plain TEX are covered.
The primitive commands are those built into the TEX computer program,
while the plain TEX commands are defined in a standard file of auxiliary
definitions (see p.88). The only commands we’ve omitted are those that
are used purely locally in the definition of plain TEX (Appendix B of The
TEXbook). The commands are organized as follows:

« “Commands for composing paragraphs”, Section 5, deal with char-
acters, words, lines, and entire paragraphs.

» “Commands for composing pages”, Section 6, deal with pages, their
components, and the output routine.

» “Commands for horizontal and vertical modes”, Section 7, have cor-
responding or identical forms for both horizontal modes (paragraphs
and hboxes) and vertical modes (pages and vboxes). These com-
mands provide boxes, spaces, rules, leaders, and alignments.

= “Commands for composing math formulas”, Section 8, provide ca-
pabilities for constructing math formulas.

» “Commands for general operations”, Section 9, provide TEX’s pro-
gramming features and everything else that doesn’t fit into any of
the other sections.

You should think of these categories as being suggestive rather than
rigorous, because the commands don’t really fit neatly into these (or any
other) categories.

Within each section, the descriptions of the commands are organized
by function. When several commands are closely related, they are de-
scribed as a group; otherwise, each command has its own explanation.
The description of each command includes one or more examples and
the output produced by each example when examples are appropriate
(for some commands they aren’t). When you are looking at a subsection
containing functionally related commands, be sure to check the end of a

21 May 2013 10:27 a.m.

TEX for the Impatient NO 24

4 Using this book \ §1

subsection for a “see also” item that refers you to related commands that
are described elsewhere.

Some commands are closely related to certain concepts. For instance,
the \halign and \valign commands are related to “alignment”, the \def
command is related to “macro”, and the \hbox and \vbox commands are
related to “box”. In these cases we’ve usually given a bare-bones des-
cription of the commands themselves and explained the underlying ideas
in the concept.

The examples associated with the commands have been typeset with
\parindent, the paragraph indentation, set to zero so that paragraphs
are normally unindented. This convention makes the examples easier to
read. In those examples where the paragraph indentation is essential,
we’ve set it explicitly to a nonzero value.

The pointing hand in front of a command or a group of commands
indicates that we judged this command or group of commands to be
particularly useful and easy to understand.

Many commands expect arguments of one kind or another (p.11). The
arguments of a command give TEX additional information that it needs
in order to carry out the command. Each argument is indicated by an
italicized term in angle brackets that indicates what kind of argument it is:

(argument) a single token or some text enclosed in braces

(charcode) a character code, i.e., an integer between 0 and 255
(dimen) a dimension, i.e., a length

(glue) glue (with optional stretch and shrink)

(number) an optionally signed integer (whole number)
(register) a register number between 0 and 255

All of these terms are explained in more detail in Section 4. In addi-
tion, we sometimes use terms such as (ftoken list) that are either self-
explanatory or explained in the description of the command. Some com-
mands have special formats that require either braces or particular words.
These are set in the same bold font that we use for the command headings.

Some commands are parameters (p.12) or table entries. This is indi-
cated in the command’s listing. You can either use a parameter as an
argument or assign a value to it. The same holds for table entries. We
use the term “parameter” to refer to entities such as \pageno that are
actually registers but behave just like parameters.

21 May 2013 10:27a.m.

TEX for the Impatient N©O 25

21 May 2013 10:27 a.m.

TEX for the Impatient N© 26

21 May 2013 10:27a.m.

TEX for the Impatient

Turning input into ink

B Programs and files you need

In order to produce a TEX document, you’ll need to run the TEX program
and several related programs as well. You’'ll also need supporting files for
TEX and possibly for these other programs. In this book we can tell
you about TEX, but we can’t tell you about the other programs and
the supporting files except in very general terms because they depend
on your local TEX environment. The people who provide you with TEX
should be able to supply you with what we call local information. The
local information tells you how to start up TEX, how to use the related
programs, and how to gain access to the supporting files.

Input to TEX consists of a file of ordinary text that you can prepare
with a text editor. A TEX input file, unlike an input file for a typical
word processor, doesn’t ordinarily contain any invisible control charac-
ters. Everything that TEX sees is visible to you too if you look at a
listing of the file.

Your input file may turn out to be little more than a skeleton that
calls for other input files. TgEX users often organize large documents
such as books this way. You can use the \input command (p.247) to
embed one input file within another. In particular, you can use \input to
incorporate files containing macro definitions—auxiliary definitions that
enhance TEX’s capabilities. If any macro files are available at your TEX
installation, the local information about TEX should tell you how to get

No 27

21 May 2013 10:27 a.m.

TEX for the Impatient

8 Using TgX \ §2

at the macro files and what they can do for you. The standard form of
TEX, the one described in this book, incorporates a collection of macros
and other definitions known as plain TEX (p. 88).

When TEX processes your document, it produces a file called the .dvi
file. The abbreviation “dvi” stands for “device independent”. The abbre-
viation was chosen because the information in the .dvi file is independent
of the device that you use to print or display your document.

To print your document or view it with a previewer, you need to process
the .dvi file with a device driver program. (A previewer is a program that
enables you to see on a screen some approximation of what the typeset
output will look like.) Different output devices usually require different
device drivers. After running the device driver, you may also need to
transfer the output of the device driver to the printer or other output
device. The local information about TEX should tell you how to get the
correct device driver and use it.

Since TEX has no built-in knowledge of particular fonts, it uses font files
to obtain information about the fonts used in your document. The font
files should also be part of your local TEX environment. Each font nor-
mally requires two files: one containing the dimensions of the characters
in the font (the metrics file) and one containing the shapes of the char-
acters (the shape file). Magnified versions of a font share the metrics file
but have different shape files. Metrics files are sometimes referred to as
.tfm files, and the different varieties of shape files are sometimes referred
to as .pk files, .px1 files, and .gf files. These names correspond to the
names of the files that TEX and its companion programs use. For exam-
ple, cmr10.tfm is the metrics file for the cmr10 font (10-point Computer
Modern Roman).

TEX itself uses only the metrics file, since it doesn’t care what the
characters look like but only how much space they occupy. The device
driver ordinarily uses the shape file, since it’s responsible for creating the
printed image of each typeset character. Some device drivers need to
use the metrics file as well. Some device drivers can utilize fonts that are
resident in a printer and don’t need shape files for those fonts.

NO 28

21 May 2013 10:27a.m.

TEX for the Impatient NO© 29

Turning input into ink 9

B Running TEX

You can run TEX on an input file screed.tex by typing something like
‘run tex’ or just ‘tex’ (check your local information). TEX will respond
with something like:

This is TeX, Version 3.0 (preloaded format=plain 90.4.23)
*ok

The “preloaded format” here refers to a predigested form of the plain TEX
macros that come with TEX. You can now type ‘screed’ to get TEX to
process your file. When it’s done, you’ll see something like:

(screed.tex [1] [2] [3])
Output written on screed.dvi (3 pages, 400 bytes).
Transcript written on screed.log.

displayed on your terminal, or printed in the record of your run if you're
not working at a terminal. Most of this output is self-explanatory. The
numbers in brackets are page numbers that TEX displays when it ships
out each page of your document to the .dvi file. TEX will usually assume
an extension ‘.tex’ to an input file name if the input file name you gave
doesn’t have an extension. For some forms of TEX you may be able to
invoke TEX directly for an input file by typing:

tex screed

or something like this.

Instead of providing your TEX input from a file, you can type it directly
at your terminal. To do so, type ‘\relax’ instead of ‘screed’ at the ‘**’
prompt. TEX will now prompt you with a ‘*’ for each line of input and
interpret each line of input as it sees it. To terminate the input, type
a command such as ‘\bye’ that tells TEX you’re done. Direct input is
sometimes a handy way of experimenting with TEX.

When your input file contains other embedded input files, the displayed
information indicates when TEX begins and ends processing each embed-
ded file. TEX displays a left parenthesis and the file name when it starts
working on a file and displays the corresponding right parenthesis when
it’s done with the file. If you get any error messages in the displayed
output, you can match them with a file by looking for the most recent
unclosed left parenthesis.

For a more complete explanation of how to run TEX, see Chapter 6 of
The TEXbook and your local information.

21 May 2013 10:27 a.m.

TEX for the Impatient

10 Using TgX \ §2

Preparing an input file

In this section we explain some of the conventions that you must follow in
preparing input for TEX. Some of the information given here also appears
in the examples in Section 3 of this book.

B Commands and control sequences

Input to TEX consists of a sequence of commands that tell TEX how to
typeset your document. Most characters act as commands of a particu-
larly simple kind: “typeset me”. The letter ‘a’, for instance, is a command
to typeset an ‘a’. But there’s another kind of command—a control se-
quence—that gives TEX a more elaborate instruction. A control sequence
ordinarily starts with a backslash (\), though you can change that con-
vention if you need to. For instance, the input:

She plunged a dagger (\dag) into the villain’s heart.
contains the control sequence \dag; it produces the typeset output:
She plunged a dagger (1) into the villain’s heart.

Everything in this example except for the \dag and the spaces acts like a
“typeset me” command. We’'ll explain more about spaces on page 12.

There are two kinds of control sequences: control words and con-
trol symbols:

» A control word consists of a backslash followed by one or more letters,
e.g., ‘\dag’. The first character that isn’t a letter marks the end of
the control word.

= A control symbol consists of a backslash followed by a single character
that isn’t a letter, e.g., ‘\$’. The character can be a space or even the
end of a line (which is a perfectly legitimate character).

A control word (but not a control symbol) absorbs any spaces or ends
of line that follow it. If you don’t want to lose a space after a con-
trol word, follow the control sequence with a control space (\.)) or with
‘{}’. Thus either:

The wonders of \TeX_shall never cease!
or:

The wonders of \TeX{} shall never cease!
produces:

The wonders of TEX shall never cease!

N© 30

21 May 2013 10:27a.m.

TEX for the Impatient NO 31

Preparing an input file 11

rather than:
The wonders of TEXshall never cease!

which is what you'd get if you left out the ‘\.,’ or the ‘{}’.

Don’t run a control word together with the text that follows it—TEX
won’t know where the control word ends. For instance, the \c control se-
quence places a cedilla accent on the character that follows it. The French
word gar¢on must be typed as ‘gar\cycon’, not ‘gar\ccon’; if you write
the latter, TEX will complain about an undefined control sequence \ccon.

A control symbol, on the other hand, doesn’t absorb anything that
follows it. Thus you must type ‘$13.56" as ‘\$13.56’, not ‘\$,,13.56’; the
latter form would produce ‘$ 13.56’. However, those accenting commands
that are named by control symbols are defined in such a way that they
produce the effect of absorbing a following space. Thus, for example, you
can type the French word déshabiller either as ‘d\’eshabiller’ or as
‘d\’ _eshabiller’.

Every control sequence is also a command, but not the other way
around. For instance, the letter ‘N’ is a command, but it isn’t a control
sequence. In this book we ordinarily use “command” rather than “con-
trol sequence” when either term would do. We use “control sequence”
when we want to emphasize aspects of TEX syntax that don’t apply to
commands in general.

B Arguments

Some commands need to be followed by one or more arguments that
help to determine what the command does. For instance, the \vskip
command, which tells TEX to skip down (or up) the page, expects an
argument specifying how much space to skip. To skip down two inches,
you would type ‘\vskip 2in’, where 2in is the argument of \vskip.

Different commands expect different kinds of arguments. Many com-
mands expect dimensions, such as the 2in in the example above. Some
commands, particularly those defined by macros, expect arguments that
are either a single character or some text enclosed in braces. Yet others
require that their arguments be enclosed in braces, i.e., they don’t accept
single-character arguments. The description of each command in this
book tells you what kinds of arguments, if any, the command expects. In
some cases, required braces define a group (see p. 15).

21 May 2013 10:27 a.m.

TEX for the Impatient

12 Using TgX \ §2

B Parameters

Some commands are parameters (p.87). You can use a parameter in
either of two ways:

1) You can use the value of a parameter as an argument to another
command. For example, the command \vskip\parskip causes a
vertical skip by the value of the \parskip (paragraph skip) glue
parameter.

2) You can change the value of the parameter by assigning something
to it. For example, the assignment \hbadness=200 causes the value
of the \hbadness number parameter to be 200.

We also use the term “parameter” to refer to entities such as \pageno
that are actually registers but behave just like parameters.

Some commands are names of tables. These commands are used like
parameters, except that they require an additional argument that specifies
a particular entry in the table. For example, \catcode names a table
of category codes (p.53). Thus the command \catcode‘~=13 sets the
category code of the ‘~’ character to 13.

B Spaces

You can freely use extra spaces in your input. Under nearly all circum-
stances TEX treats several spaces in a row as being equivalent to a single
space. For instance, it doesn’t matter whether you put one space or two
spaces after a period in your input. Whichever you do, TEX performs
its end-of-sentence maneuvers and leaves the appropriate (in most cases)
amount of space after the period. TEX also treats the end of an input line
as equivalent to a space. Thus you can end your input lines wherever it’s
convenient—TEX makes input lines into paragraphs in the same way no
matter where the line breaks are in your input.

A blank line in your input marks the end of a paragraph. Several blank
lines are equivalent to a single one.

TEX ignores input spaces within math formulas (see below). Thus you
can include or omit spaces anywhere within a math formula—TEX doesn’t
care. Even within a math formula, however, you must not run a control
word together with a following letter.

If you are defining your own macros, you need to be particularly careful
about where you put ends of line in their definitions. It’s all too easy to
define a macro that produces an unwanted space in addition to whatever
else it’s supposed to produce. We discuss this problem elsewhere since
it’s somewhat technical; see page 270.

N© 32

21 May 2013 10:27a.m.

TEX for the Impatient NO© 33

Preparing an input file 13

A space or its equivalent between two words in your input doesn’t
simply turn into a space character in your output. A few of these input
spaces turn into ends of lines in the output, since input lines generally
don’t correspond to output lines. The others turn into spaces of variable
width called “glue” (p.66), which has a natural size (the size it “wants to
be”) but can stretch or shrink. When TEX is typesetting a paragraph that
is supposed to have an even right margin (the usual case), it adjusts the
widths of the glue in each line to get the lines to end at the margin. (The
last line of a paragraph is an exception, since it isn’t ordinarily required
to end at the right margin.)

You can prevent an input space from turning into an end of line by
using a tie (7). For example, you wouldn’t want TEX to put a line break
between the ‘Fig.” and ‘8’ of ‘Fig. 8. By typing ‘Fig. 8’ you can prevent
such a line break.

B Comments

You can include comments in your TEX input. When TEX sees a com-
ment it just passes over it, so what’s in a comment doesn’t affect your
typeset document in any way. Comments are useful for providing extra
information about what’s in your input file. For example:

% ========= Start of Section ‘Hedgehog’ =========

A comment starts with a percent sign (%) and extends to the end of
the input line. TEX ignores not just the comment but the end of the line
as well, so comments have another very important use: connecting two
lines so that the end of line between them is invisible to TEX and doesn’t
generate an output space or an end of line. For instance, if you type:

A fool with a spready,
sheet is still a fool.
you’ll get:
A fool with a spreadsheet is still a fool.

B Punctuation

TEX normally adds some extra space after what it thinks is a punctuation
mark at the end of a sentence, namely, ‘.’, ‘?’, or ‘!’ followed by an
input space. TEX doesn’t add the extra space if the punctuation mark
follows a capital letter, though, because it assumes the capital letter to
be an initial in someone’s name. You can force the extra space where it
wouldn’t otherwise occur by typing something like:

A computer from IBM\null?

21 May 2013 10:27 a.m.

TEX for the Impatient NO 34

14 Using TgX \ §2

The \null doesn’t produce any output, but it does prevent TEX from
associating the capital ‘M’ with the question mark. On the other hand,
you can cancel the extra space where it doesn’t belong by typing a control
space after the punctuation mark, e.g.:

Proc.\LRoyal Acad.\yof Twits
so that you'll get:

Proc. Royal Acad. of Twits

rather than:

Proc. Royal Acad. of Twits

Some people prefer not to leave more space after punctuation at the end
of a sentence. You can get this effect with the \frenchspacing command
(p.106). \frenchspacing is often recommended for bibliographies.

For single quotation marks, you should use the left and right single
quotes (¢ and ’) on your keyboard. For left and right double quotation
marks, use two left single quotes or two right single quotes (¢¢ or ’?)
rather than the double quote (") on your keyboard. The keyboard double
quote will in fact give you a right double quotation mark in many fonts,
but the two right single quotes are the preferred TEX style. For example:

There is no ‘q’ in this sentence.

¢‘Talk, child,’’ said the Unicorn.
She said, °‘\thinspace‘Enough!’, he said.’’

These three lines yield:

There is no ‘q’ in this sentence.
“Talk, child,” said the Unicorn.
She said, “‘Enough!’, he said.”

The \thinspace in the third input line prevents the single quotation
mark from coming too close to the double quotation marks. Without it,
you’d just see three nearly equally spaced quotation marks in a row.

TEX has three kinds of dashes:

= Short ones (hyphens) like this (-). You get them by typing ‘-’
= Medium ones (en-dashes) like this (-). You get them by typing ‘--’.
= Long ones (em-dashes) like this (—). You get them by typing ‘—--".

21 May 2013 10:27a.m.

TEX for the Impatient N© 35

Preparing an input file 15

Typically you’d use hyphens to indicate compound words like “will-o’-
the-wisp”, en-dashes to indicate page ranges such as “pages 81-87”, and
em-dashes to indicate a break in continuity—Ilike this.

B Special characters

Certain characters have special meaning to TEX, so you shouldn’t use
them in ordinary text. They are:

$ # & % - - 7 { A\

In order to produce them in your typeset document, you need to use
circumlocutions. For the first five, you should instead type:

\$ \# \& \% _
For the others, you need something more elaborate:

VL VLY 8\{$ $\}$ \backslash

B Groups

A group consists of material enclosed in matching left and right braces ({
and }). By placing a command within a group, you can limit its effects
to the material within the group. For instance, the \bf command tells
TEX to set something in boldface type. If you were to put \bf into your
input and do nothing else to counteract it, everything in your document
following the \bf would be set in boldface. By enclosing \bf in a group,
you limit its effect to the group. For example, if you type:

We have {\bf a few boldface words} in this sentence.
you'll get:

We have a few boldface words in this sentence.

You can also use a group to limit the effect of an assignment to one of
TEX’s parameters. These parameters contain values that affect how TEX
typesets your document. For example, the value of the \parindent pa-
rameter specifies the indentation at the beginning of a paragraph. The as-
signment \parindent = 15pt sets the indentation to 15 printer’s points.
By placing this assignment at the beginning of a group containing a few
paragraphs, you can change the indentation of just those paragraphs. If
you don’t enclose the assignment in a group, the changed indentation
will apply to the rest of the document (or up to the next assignment to
\parindent, if there’s a later one).

Not all pairs of braces indicate a group. In particular, the braces as-
sociated with an argument for which the braces are not required don’t

21 May 2013 10:27 a.m.

TEX for the Impatient

16 Using TgX \ §2

indicate a group—they just serve to delimit the argument. Of those com-
mands that do require braces for their arguments, some treat the braces
as defining a group and the others interpret the argument in some special
way that depends on the command.!

B Math formulas

A math formula can appear in text (text math) or set off on a line by
itself with extra vertical space around it (display math). You enclose a
text formula in single dollar signs ($) and a displayed formula in double
dollar signs ($$). For example:

If $a<b$, then the relation $$e”a < e"b$$ holds.
This input produces:

If @ < b, then the relation
et < e
holds.

Section 8 describes the commands that are useful in math formulas.

How TEX works

In order to use TEX effectively, it helps to have some idea of how TEX
goes about its activity of transmuting input into output. You can imagine
TEX as a kind of organism with “eyes”, “mouth”, “gullet”, “stomach”,
and “intestines”. Each part of the organism transforms its input in some
way and passes the transformed input to the next stage.

The eyes transform an input file into a sequence of characters. The
mouth transforms the sequence of characters into a sequence of tokens,
where each token is either a single character or a control sequence. The
gullet expands the tokens into a sequence of primitive commands, which
are also tokens. The stomach carries out the operations specified by
the primitive commands, producing a sequence of pages. Finally, the
intestines transform each page into the form required for the .dvi file
and send it there. These actions are described in more detail in Section 4
under “anatomy of TEX” (p.46).

1 More precisely, for primitive commands either the braces define a group or they
enclose tokens that aren’t processed in TEX’s stomach. For \halign and \valign the
group has a trivial effect because everything within the braces either doesn’t reach the
stomach (because it’s in the template) or is enclosed in a further inner group.

N© 36

21 May 2013 10:27a.m.

TEX for the Impatient

How TgX works 17

The real typesetting goes on in the stomach. The commands instruct
TEX to typeset such-and-such a character in such-and-such a font, to
insert an interword space, to end a paragraph, and so on. Starting with
individual typeset characters and other simple typographic elements, TEX
builds up a page as a nest of boxes within boxes within boxes (see “box”,
p.51). Each typeset character occupies a box, and so does an entire page.
A box can contain not just smaller boxes but also glue (p.66) and a few
other things. The glue produces space between the smaller boxes. An
important property of glue is that it can stretch and shrink; thus TEX can
make a box larger or smaller by stretching or shrinking the glue within it.

Roughly speaking, a line is a box containing a sequence of character
boxes, and a page is a box containing a sequence of line boxes. There’s
glue between the words of a line and between the lines of a page. TEX
stretches or shrinks the glue on each line so as to make the right margin
of the page come out even and the glue on each page so as to make the
bottom margins of different pages be equal. Other kinds of typograph-
ical elements can also appear in a line or in a page, but we won’t go
into them here.

As part of the process of assembling pages, TEX needs to break para-
graphs into lines and lines into pages. The stomach first sees a paragraph
as one long line, in effect. It inserts line breaks in order to transform
the paragraph into a sequence of lines of the right length, performing a
rather elaborate analysis in order to choose the set of breaks that makes
the paragraph look best (see “line break”, p.74). The stomach carries out
a similar but simpler process in order to transform a sequence of lines into
a page. Essentially the stomach accumulates lines until no more lines can
fit on the page. It then chooses a single place to break the page, putting
the lines before the break on the current page and saving the lines after
the break for the next page (see “page break”, p. 85).

When TEX is assembling an entity from a list of items (boxes, glue,
etc.), it is in one of six modes (p.81). The kind of entity it is assembling
defines the mode that it is in. There are two ordinary modes: ordinary
horizontal mode for assembling paragraphs (before they are broken into
lines) and ordinary vertical mode for assembling pages. There are two
restricted modes: restricted horizontal mode for appending items hori-
zontally to form a horizontal box and internal vertical mode for append-
ing items vertically to form a vertical box (other than a page). Finally,
there are two math modes: text math mode for assembling math formulas
within a paragraph and display math mode for assembling math formulas
that are displayed on lines by themselves (see “Math formulas”, p. 16).

No 37

21 May 2013 10:27 a.m.

TEX for the Impatient

18 Using TgX \ §2

New TEX versus old TEX

In 1989 Knuth made a major revision to TEX in order to adapt it to
the character sets needed to support typesetting for languages other than
English. The revision included a few minor extra features that could
be added without disturbing anything else. This book describes “new
TEX”. If you're still using an older version of TEX (version 2.991 or
earlier), you'll want to know what features of new TEX you can’t use. The
following features aren’t available in the older versions:

» \badness (p.170)

» \emergencystretch (p.124)

» \errorcontextlines (p.262)

» \holdinginserts (p.149)

» \language, \setlanguage, and \newlanguage (pp. 128, 244)
» \lefthyphenmin and \righthyphenmin (p.128)

» \noboundary (p.101)

» \topglue (p.156)

» The ~~2y notation for hexadecimal digits (p. 55)

We recommend that you obtain new TEX if you can.

Resources

A number of resources are available to help you in using TgX. The
TEXbook is the definitive source of information on TEX:

Knuth, Donald E., The TEXbook. Reading, Mass.: Addison-Wesley,
1984.

Be sure to get the seventeenth printing (January 1990) or later; the earlier
printings don’t cover the features of new TEX.

IITEX is a very popular collection of commands designed to simplify
the use of TEX. It is described in:

Lamport, Leslie, The IX\TEX Document Preparation System. Reading,
Mass.: Addison-Wesley, 1986.

AMS-TEX is the collection of commands adopted by the American Math-
ematical Society as a standard for submitting mathematical manuscripts
electronically. It is described in:

Spivak, Michael D., The Joy of TEX. Providence, R.I.: American
Mathematical Society, 1986.

N© 38

21 May 2013 10:27a.m.

TEX for the Impatient NO© 39

Using TpX 19

You can join the TEX Users Group (TUG), which publishes a newslet-
ter called TUGBoat. TUG is an excellent source not only for informa-
tion about TEX but also for collections of macros, including AzS-TEX.
Its address is:

TEX Users Group

c/o American Mathematical Society
P.O. Box 9506

Providence, RI 02940

U.S.A.

Finally, you can obtain copies of the eplain.tex macros described in
Section 12 as well as the macros used in typesetting this book. They
are available through the Internet network by anonymous ftp from the
following hosts:

labrea.stanford.edu [36.8.0.47]
ics.uci.edu [128.195.1.1]
june.cs.washington.edu [128.95.1.4]

The electronic version includes additional macros that format input for
the BIBTX computer program, written by Oren Patashnik at Stanford
University, and print the output from that program. If you find bugs in
the macros, or think of improvements, you can send electronic mail to
Karl at karl@cs.umb.edu.

The macros are also available for US $10.00 on 51/4” or 314" PC-
format diskettes from:

Paul Abrahams

214 River Road

Deerfield, MA 01342

Email: Abrahams)Wayne-MTSQum.cc.umich.edu
These addresses are correct as of June 1990; please be aware that they
may change after that, particularly the electronic addresses.

21 May 2013 10:27 a.m.

TEX for the Impatient N© 40

21 May 2013 10:27a.m.

TEX for the Impatient

3 |Examples

This section of the book contains a set of examples to help get you started
and to show you how to do various things with TEX. Each example has
TEX output on the left-hand page and the TEX input that led to that
output on the right-hand page. You can use these examples both as
forms to imitate and as a way of finding the TEX commands that you
need in order to achieve a particular effect. However, these examples can
illustrate only a few of the about 900 TEX commands.

Some of the examples are self-descriptive—that is, they discuss the
very features of TEX that they are illustrating. These discussions are
necessarily sketchy because there isn’t room in the examples for all the
information you’d need. The capsule summary of commands (Section 13)
and the index will help you locate the complete explanation of every TEX
feature shown in the examples.

Because we'’ve designed the examples to illustrate many things at once,
some examples contain a great variety of typographical effects. These
examples generally are mot good models of typographical practice. For
instance, Example 8 has some of its equation numbers on the left and some
on the right. You’d never want to do that in a real publication.

Each example except for the first one starts with a macro (see p.75)
named \xmpheader. We’ve used \xmpheader in order to conserve space
in the input, since without it each example would have several lines of
material you’d already seen. \xmpheader produces the title of an example
and the extra space that goes with it. You can see in the first example
what \xmpheader does, so you can imitate it if you wish. Except for
\xmpheader, every command that we use in these examples is defined

in plain TEX.

N© 41

21 May 2013 10:27 a.m.

TEX for the Impatient

22 Ezamples \ §3

Example 1: Entering simple text

It’s easy to prepare ordinary text for TEX since TEX usually doesn’t
care about how you break up your input into lines. It treats the end of a
line of text like a space. If you don’t want a space there, put a percent
sign (the comment character) at the end of the line. TEX ignores spaces
at the start of a line, and treats more than one space as equivalent to
a single space, even after a period. You indicate a new paragraph by
skipping a line (or more than one line).

When TEX sees a period followed by a space (or the end of the line,
which is equivalent), it ordinarily assumes you’ve ended a sentence and
inserts a little extra space after the period. It treats question marks and
exclamation points the same way.

But TEX’s rules for handling periods sometimes need fine tuning.
TEX assumes that a capital letter before a period doesn’t end the sentence,
so you have to do something a little different if, say, you're writing about
DNA. It’s a good idea to tie words together in references such as “see
Fig. 8’ and in names such as V. I. Lenin and in ... so that TEX will
never split them in an awkward place between two lines. (The three dots
indicate an ellipsis.)

You should put quotations in pairs of left and right single “quotes”
so that you get the correct left and right double quotation marks. “For
adjacent single and double quotation marks, insert a ‘thinspace’”. You
can get en-dashes—like so, and em-dashes—Ilike so.

1 TEX treats a tab like a space too, as we point out in this footnote.

NO 42

21 May 2013 10:27a.m.

TEX for the Impatient N© 43

Ezxample 1: Entering simple text 23

% TeX ignores anything on a line after a %
% The next two lines define fonts for the title
\font\xmplbx = cmbx10 scaled \magstephalf
\font\xmplbxti = cmbxtilO scaled \magstephalf
% Now here’s the title.
\leftline{\xmplbx Example 1:\quad\xmplbxti Entering simple text}
\vglue .5\baselineskip % skip an extra half line
It’s easy to prepare ordinary text for \TeX\ since
\TeX\ usually doesn’t care about how you break up your input into
lines. It treats the end of a line of text like a space.’
\footnote \dag{\TeX\ treats a tab like a space too, as we point
out in this {\it footnote}.} If you don’t want a space there,
put a per
cent sign (the comment character) at the end of the line.

\TeX\ ignores spaces at the start of a line, and treats more
than one space as equivalent to a single space,
even after a period. You indicate a new paragraph by
skipping a line (or more than one line).

When \TeX\ sees a period followed by a space (or the end of the
line, which is equivalent), it ordinarily assumes you’ve ended a
sentence and inserts a little extra space after the period. It
treats question marks and exclamation points the same way.

But \TeX’s rules for handling periods sometimes need fine
tuning. \TeX\ assumes that a capital letter before a period
doesn’t end the sentence, so you have to do something a little
different if, say, you’re writing about DNA\null.

% The \null prevents TeX from perceiving the capital ‘A’

% as being next to the period.

It’s a good idea to tie words together in references such as
‘‘see Fig.”8’’ and in names such as V. I\null. Lenin and in
$\1dots$ so that \TeX\ will never split them in an awkward place
between two lines. (The three dots indicate an ellipsis.)

You should put quotations in pairs of left and right

single ‘‘quotes’’ so that you get the correct left and right
double quotation marks. ‘‘For adjacent single and double
quotation marks, insert a ‘thinspace’\thinspace’’. You can

get en-dashes--like so, and em-dashes---like so.

\bye % end the document

21 May 2013 10:27 a.m.

TEX for the Impatient NO 44

24 Ezamples \ §3

Example 2: Indentation

Now let’s see how to control indentation. If an ordinary word processor
can do it, so surely can TEX. Note that this paragraph isn’t indented.

Usually you’ll either want to indent paragraphs or to leave extra
space between them. Since we haven’t changed anything yet, this para-
graph is indented.

Let’s do these two paragraphs a different way, with no indentation and
six printer’s points of extra space between paragraphs.

So here’s another paragraph that we’re typesetting without indentation.
If we didn’t put space between these paragraphs, you would have a hard
time knowing where one ends and the next begins.

It’s also possible to indent both sides of entire paragraphs. The next
three paragraphs illustrate this:

“We’ve indented this paragraph on both sides by the para-
graph indentation. This is often a good way to set long quota-
tions.

“You can do multiple paragraphs this way if you choose.
This is the second paragraph that’s singly indented.”

You can even make paragraphs doubly narrow if
that’s what you need. This is an example of a doubly
narrowed paragraph.

In this paragraph we’re back to the normal margins, as you can see
for yourself. We'll let it run on a little longer so that the margins are
clearly visible.

Now we’ll indent the left margin by half an inch and leave
the right margin at its usual position.

Finally, we’ll indent the right margin by half an inch and
leave the left margin at its usual position.

21 May 2013 10:27a.m.

TEX for the Impatient N©O 45

Example 2: Indentation 25

\xmpheader 2/{Indentation}}, see p. 21

\noindent Now let’s see how to control indentation. If an
ordinary word processor can do it, so surely can \TeX. Note
that this paragraph isn’t indented.

Usually you’ll either want to indent paragraphs or to leave
extra space between them. Since we haven’t changed anything
yet, this paragraph is indented.

{\parindent = Opt \parskip = 6pt

% The left brace starts a group containing the unindented text.
Let’s do these two paragraphs a different way,

with no indentation and six printer’s points of extra space
between paragraphs.

So here’s another paragraph that we’re typesetting without
indentation. If we didn’t put space between these paragraphs,
you would have a hard time knowing where one ends

and the next begins.

\par % The paragraph *must* be ended within the group.

}), The right brace ends the group containing unindented text.

It’s also possible to indent both sides of entire paragraphs.
The next three paragraphs illustrate this:

\smallskip % Provide a little extra space here.

% Skips like this and \vskip below end a paragraph.

{\narrower

‘‘We’ve indented this paragraph on both sides by the paragraph
indentation. This is often a good way to set long quotationms.

‘‘You can do multiple paragraphs this way if you choose. This
is the second paragraph that’s singly indented.’’\par}

{\narrower \narrower You can even make paragraphs doubly narrow
if that’s what you need. This is an example of a doubly
narrowed paragraph.\par}

\vskip 1pc % Skip down one pica for visual separation.

In this paragraph we’re back to the normal margins, as you can
see for yourself. We’ll let it run on a little longer so that
the margins are clearly visible.

{\leftskip .5in Now we’ll indent the left margin by half

an inch and leave the right margin at its usual position.\par}
{\rightskip .5in Finally, we’ll indent the right margin by half
an inch and leave the left margin at its usual position.\par}
\bye 7% end the document

21 May 2013 10:27 a.m.

TEX for the Impatient

26 Ezamples \ §3

Example 3: Fonts and special characters

Here are a few words in an italic font, a few words in a boldface
font, and a mixture of the two, with two roman words inserted. Where
an italic font is followed by a nonitalic font, we’ve inserted an “italic
correction” (\/) to make the spacing look right. Here’s a smaller word—
but the standard TEX fonts won’t give you anything smaller than enis.

If you need any of the ten characters:

S & o# - % 7 7 4 P\

you’ll need to write them a special way. Look at the facing page to see
how to do it.

TEX has the accents and letters that you’ll need for French words
such as role and éléve, for German words such as Schufl, and for words
in several other languages as well. You’ll find a complete list of TEX’s
accents and letters of European languages on page 100 and page 97.

You can also get Greek letters such as “a” and “€2” for use in math,
card suits such as “#” and “{”, music symbols such as “f” and “b”, and
many other special symbols that you’ll find listed on page 188. TEX will
only accept these sorts of special symbols in its “math mode”, so you’ll
need to enclose them within ‘$’ characters.

N© 46

21 May 2013 10:27a.m.

TEX for the Impatient NO 47

Example 3: Fonts and special characters 27

\xmpheader 3/{Fonts and special characters}) see p.21
\chardef \\ = ‘\\ % Let \\ denote a backslash.

{\it Here are a few words in an italic font}, {\bf a

few words in a boldface font}, {\it and a\/ {\bf mixture}
of the two, with two\/ {\rm roman words} inserted}.

Where an italic font is followed by a nonitalic font, we’ve
inserted an ‘‘italic correction’’ ({\tt \\/}) to make the
spacing look right.

Here’s a {\sevenrm smaller} word---but the standard \TeX\
fonts won’t give you anything smaller than {\fiverm this}.

If you need any of the ten characters:

\medskip

\centerline{\$ \quad \& \quad \# \quad _ \quad \% \quad
\char ‘\" \quad \char ‘\~ \quad $\{$ \quad
$\}$ \quad \backslash}

% The \quad inserts an em space between characters.

\medskip

\noindent you’ll need to write them a special way. Look at

the facing page to see how to do it.

\TeX\ has the accents and letters that you’ll need

for French words such as {\it r\~ ole\/} and {\it \’
el\ ¢ eve\/}, for German words such as {\it Schu\ss\/},
and for words in several other languages as well.

You’ll find a complete list of \TeX’s accents and letters
of European languages on page 100 and page 97.

You can also get Greek letters such as ‘‘α’’ and

¢ “Ω’’ for use in math, card suits such as
‘“\spadesuit’’ and ‘‘\diamondsuit’’, music symbols

such as ‘‘\sharp’’ and ‘‘\flat’’, and many other special
symbols that you’ll find listed on page 188.

\TeX\ will only accept these sorts of special symbols in its
‘‘math mode’’, so you’ll need to enclose them

within ‘{\tt \$}’ characters.

\bye % end the document

21 May 2013 10:27 a.m.

TEX for the Impatient

28 Ezamples \ §3

Example 4: Interline spacing

Once in a while you may want to print a document with extra
space between the lines. For instance, bills before Congress are printed
this way so that the legislators can mark them up. For the same reason,
book publishers usually insist that manuscripts be double-spaced. Double

spacing is rarely appropriate for finished documents, however.

A baseline is an imaginary line that acts like the lines on a pad
of ruled paper. You can control the interline spacing—what printers call
“leading”—Dby setting the amount of space between baselines. Take a
look at the input to see how to do it. You could use the same method for
1 1/2 spacing as well, using 1.5 instead of 2. (You can also write 11/ a

nicer way.)

For this example we’ve also increased the paragraph indentation

and skipped an extra line between paragraphs.

NO 48

21 May 2013 10:27a.m.

TEX for the Impatient N© 49

Ezxample 4: Interline spacing 29

\xmpheader 4/{Interline spacingl}} see p.21

\baselineskip = 2\baselineskip 7% double spacing

\parskip = \baselineskip % Skip a line between paragraphs.
\parindent = 3em } Increase indentation of paragraphs.

% The following macro definition gives us nice inline
% fractions. You’ll find it in our eplain macros.
\def\frac#1/#2{\leavevmode
\kern.lem \raise .5ex \hbox{\the\scriptfontO #1}J,
\kern-.lem $/$%
\kern-.15em \lower .25ex \hbox{\the\scriptfontO #2}J
Yh

Once in a while you may want to print a document with extra
space between the lines. For instance, bills before Congress
are printed this way so that the legislators can mark them up.
For the same reason, book publishers usually insist that
manuscripts be double-spaced. Double spacing is rarely
appropriate for finished documents, however.

A baseline is an imaginary line that acts like the lines

on a pad of ruled paper. You can control the interline
spacing---what printers call ‘leading’’---%

by setting the amount of space between baselines. Take a
look at the input to see how to do it. You could use

the same method for $1\;1/2$ spacing as well, using {\tt 1.5}
instead of {\tt 2}. (You can also write $1\frac 1/2$

a nicer way.)

% Here we’ve used the macro definition given above.

For this example we’ve also increased the paragraph indentation
and skipped an extra line between paragraphs.

\bye % end the document

21 May 2013 10:27 a.m.

TEX for the Impatient NO© 50

30 Ezamples \ §3

Example 5: Spacing, rules, and boxes

Here’s an example of a “description list”. In practice you’d be better
off using a macro to avoid the repetitive constructs and to make sure that
the subhead widths are wide enough:

Queen of Hearts An ill-tempered woman, prone to saying “Off with
his head!” at the slightest provocation.

Cheshire Cat A cat with an enormous smile that Alice found in
a tree.
Mock Turtle A lachrymose creature, quite a storyteller, who was

a companion to the Gryphon. Reputedly the prin-
cipal ingredient of Mock Turtle Soup.

Here’s an example of some words in a ruled box, just as Lewis Carroll
wrote them:

Who would not give all else for twop
ennyworth only of Beautiful Soup?

* ok ok ok okok ok ok ok ok ok ok ok ok ok ok ok ok

Here we’ve gotten the effect of a revision bar on the material in this
paragraph. The revision bar might indicate a change.

21 May 2013 10:27a.m.

TEX for the Impatient N©O 51

Example 5: Spacing, rules, and boxes 31

\xmpheader 5/{Spacing, rules, and boxes}), see p. 21
Here’s an example of a ‘‘description list’’. In practice you’d
be better off using a macro to avoid the repetitive constructs
and to make sure that the subhead widths are wide enough:
\bigskip
% Call the indentation for descriptions \descindent
% and set it to 8 picas.
\newdimen\descindent \descindent = 8pc
% Indent paragraphs by \descindent.
% Skip an additional half line between paragraphs.
{\noindent \leftskip = \descindent \parskip = .5\baselineskip
% Move the description to the left of the paragraph.
\llap{\hbox to \descindent{\bf Queen of Hearts\hfil}}%
An ill-tempered woman, prone to saying ‘‘Off with his
head!’’\ at the slightest provocation.\par
\noindent\1llap{\hbox to \descindent{\bf Cheshire Cat\hfil}}}
A cat with an enormous smile that Alice found
in a tree.\par
\noindent\1llap{\hbox to \descindent{\bf Mock Turtle\hfil}}},
A lachrymose creature, quite a storyteller, who was a
companion to the Gryphon. Reputedly the principal ingredient
of Mock Turtle Soup.
\par}
\bigskip\hrule\bigskip % A line with vertical space around it.
Here’s an example of some words in a ruled box, just as
Lewis Carroll wrote them:
\bigskip
% Put 8pt of space between the text and the surrounding rules.
\hbox{\vrule\vbox{\hrule

\hbox spread 8pt{\hfil\vbox spread 8pt{\vfil

\hbox{Who would not give all else for twopl}ti
\hbox{ennyworth only of Beautiful Soup?}%

\vfil}\hfil}

\hrule}\vrule},

\bigskip\line{\hfil\hbox to 3in{\leaders\hbox{ * }\hfil}\hfil}
\bigskip

\line{\hskip -4pt\vrule\hfil\vbox{

Here we’ve gotten the effect of a revision bar on the material
in this paragraph. The revision bar might indicate a change.l}}
\bye % end the document

21 May 2013 10:27 a.m.

TEX for the Impatient

32 Ezamples \ §3

Example 6: Odds and ends

TEX knows how to hyphenate words, but it isn’t infallible. If you are
discussing the chemical 5-[p-(Flourosulfonyl)benzoyl]-1, N%-ethenoadeno-
sine and TEX complains to you about an “overfull hbox”, try inserting
some “discretionary hyphens”. The notation ‘\-’ tells TEX about a dis-
cretionary hyphen, that is, one that it might not have inserted otherwise.

You can typeset text unjustified, i.e., with an uneven right margin.
In the old days, before word processors were common, typewritten doc-
uments were unjustified because there was no convenient alternative.
Some people prefer text to be unjustified so that the spacing between
words can be uniform. Most books are set with justified margins, but
not all.

Assertion 27. There is an easy way to typeset the headings of assertions,
lemmas, theorems, etc.

Here’s an example of how to typeset an itemized list two levels deep.
If you need more levels, you’ll have to program it yourself, alas.

1. This is the first item.

2. This is the second item. It consists of two paragraphs. We’ve in-
dented the second paragraph so that you can easily see where it
starts.

The second paragraph has three subitems underneath it.
(a) This is the first subitem.
(b) This is the second subitem.
(¢) This is the third subitem.

e This is a strange-looking item because it’s completely different from
the others.

Here’s a left-justified line.<=
=Here’s a right-justified line.
=Here’s a centered line.<=

- 32 -

NO 52

21 May 2013 10:27a.m.

TEX for the Impatient N© 53

Example 6: Odds and ends 33

\xmpheader 6/{0dds and ends}), see p. 21

\chardef \\ = ‘\\ % Let \\ denote a backslash.
\footline{\hfil{\tenit - \folio -}\hfil}

% \footline provides a footer line.

% Here it’s a centered, italicized page number.

\TeX\ knows how to hyphenate words, but it isn’t infallible.
If you are discussing the chemical

${\it 5}$-[p-(Flouro\-sul\-fonyl)ben\-zoyl]l-1,%
$N"6$-ethe\-no\-adeno\-sine

and \TeX\ complains to you about an ‘‘overfull hbox’’, try
inserting some ‘‘discretionary hyphens’’. The notation

‘“{\tt \\-}’ tells \TeX\ about a dis\-cre\-tion\-ary hyphen,
that is, one that it might not have inserted otherwise.
\medskip

{\raggedright You can typeset text unjustified, i.e., with
an uneven right margin. In the old days, before word
processors were common, typewritten documents were
unjustified because there was no convenient alternative.
Some people prefer text to be unjustified so that the
spacing between words can be uniform. Most books are set
with justified margins, but not all. \par}

\proclaim Assertion 27. There is an easy way to typeset
the headings of assertions, lemmas, theorems, etc.

Here’s an example of how to typeset an itemized list two
levels deep. If you need more levels, you’ll have to
program it yourself, alas.

\smallskip

\item {1.} This is the first item.

\item {2.} This is the second item. It consists of two
paragraphs. We’ve indented the second paragraph so that
you can easily see where it starts.

\item{} \indent The second paragraph has three subitems
underneath it.

\itemitem {(a)} This is the first subitem.

\itemitem {(b)} This is the second subitem.

\itemitem {(c)} This is the third subitem.

\item {\bullet} This is a strange-looking item because it’s
completely different from the others.

\smallskip

\leftline{Here’s a left-justified line.\Leftarrow}
\rightline{\RightarrowHere’s a right-justified line.}
\centerline{\RightarrowHere’s a centered line.\Leftarrow}
% Don’t try to use these commands within a paragraph.

\bye % end the document

21 May 2013 10:27 a.m.

TEX for the Impatient

34 Ezamples \ §3

Example 7: Using fonts from other sources

You aren’t restricted to using the Computer Modern fonts that come
with TgX. Other fonts are available from many sources, and you may
prefer them. For instance, we’ve set this page in 10-point Palatino Roman.
Palatino was designed by Hermann Zapf, considered to be one of the
greatest type designers of the twentieth century. This page will give you
some idea of what it looks like.

Fonts can be provided either as outlines or as bitmaps. An outline
font describes the shapes of the characters, while a bitmap font specifies
each pixel (dot) that makes up each character. A font outline can be
used to generate many different sizes of the same font. The Metafont
program that’s associated with TgX provides a particularly powerful
way of generating bitmap fonts, but it’s not the only way.

The fact that a single outline can generate a great range of point sizes
for a font tempts many vendors of digital typefaces to provide just one
set of outlines for a typeface such as Palatino Roman. This may be a
sensible economic decision, but it is an aesthetic sacrifice. Fonts cannot
be scaled up and down linearly without loss of quality. Larger sizes of
letters should not, in general, have the same proportions as smaller sizes;
they just don’t look right. For example, a font that’s linearly scaled down
will tend to have too little space between strokes, and its x-height will be
too small.

A type designer can compensate for these changes by providing dif-
ferent outlines for different point sizes, but it’s necessary to go to the
expense of designing these different outlines. One of the great advan-
tages of Metafont is that it's possible to parameterize the descriptions of
characters in a font. Metafont can then maintain the typographical qual-
ity of characters over a range of point sizes by adjusting the character
shapes accordingly.

NO 54

21 May 2013 10:27a.m.

TEX for the Impatient N©O 55

Example 7: Using fonts from other sources 35

\xmpheader 7/{Using fonts from other sourcesl}’ see p.21
\font\tenrm = pplr % Palatino

% Define a macro for invoking Palatino.
\def\pal{\let\rm = \tenrm \baselineskip=12.5pt \rm}
\pal % Use Palatino from now on.

You aren’t restricted to using the Computer Modern fonts that
come with \TeX. Other fonts are available from many sources,
and you may prefer them. For instance, we’ve set this page
in 10-point Palatino Roman. Palatino was designed by

Hermann Zapf, considered to be one of the greatest type
designers of the twentieth century. This page will

give you some idea of what it looks like.

Fonts can be provided either as outlines or as bitmaps. An
outline font describes the shapes of the characters, while a
bitmap font specifies each pixel (dot) that makes up each
character. A font outline can be used to generate many
different sizes of the same font. The Metafont program
that’s associated with \TeX\ provides a particularly
powerful way of generating bitmap fonts, but it’s not the
only way.

The fact that a single outline can generate a great range of
point sizes for a font tempts many vendors of digital
typefaces to provide just one set of outlines for a typeface
such as Palatino Roman. This may be a sensible economic
decision, but it is an aesthetic sacrifice. Fonts cannot be
scaled up and down linearly without loss of quality.

Larger sizes of letters should not, in general, have the
same proportions as smaller sizes; they just don’t look
right. For example, a font that’s linearly scaled down will
tend to have too little space between strokes, and its
x-height will be too”small. % tie added to avoid widow word

A type designer can compensate for these changes by
providing different outlines for different point sizes, but
it’s necessary to go to the expense of designing these
different outlines. One of the great advantages of Metafont
is that it’s possible to parameterize the descriptions of
characters in a font. Metafont can then maintain the
typographical quality of characters over a range of point
sizes by adjusting the character shapes accordingly.

\bye % end the document

TEX for the Impatient

36

Example 8:

A ruled table

21 May 2013 10:27 a.m.

NO 56

Ezxamples

\ 88

Some Choice Edible Mushrooms

Botanical
Name

Pleurotus
ostreatus

Lactarius
hygrophorotides

Morchella
esculenta

Boletus edulus

Common
Name

Oyster mushroom

Milky hygroph

White morel

King bolete

Identifying
Characteristics

Grows in shelflike clusters
on stumps or logs, pink-gray
oyster-shaped caps, stem
short or absent.

Butterscotch-brown cap and
stem, copious white latex,
often on ground in woods
near streams.

Conical cap with black pits
and white ridges; no gills.
Often found near old apple
trees and dying elms in the
spring.

Reddish-brown to tan cap
with yellow pores (white
when young), bulbous stem,
often near conifers, birch,
or aspen.

21 May 2013 10:27a.m.

TEX for the Impatient NO 57

Example 8: A ruled table 37

\xmpheader 8/{A ruled tablel}), see p.21
\bigskip
\offinterlineskip % So the vertical rules are connected.
% \tablerule constructs a thin rule across the table.
\def\tablerule{\noalign{\hrule}}
% \tableskip creates 9pt of space between entries.
\def\tableskip{\omit&height 9pt&&&\omit\cr}
% & separates templates for each column. TeX substitutes
% the text of the entries for #. We must have a strut
% present in every row of the table; otherwise, the boxes
% won’t butt together properly, and the rules won’t join.
\halign{\tabskip = .7em plus lem % glue between columns
% Use \vtop for short multiline entries in the first column.
% Typeset the lines ragged right, without hyphenation.
\vtop{\hsize=6pc\pretolerance = 10000\hbadness = 10000
\normalbaselines\noindent\it#\strut}y,
&\vrule #&#\hfil &\vrule #J, the rules and middle column
% Use \vtop to get whole paragraphs in the last column.
&\vtop{\hsize=11pc \parindent=Opt \normalbaselineskip=12pt
\normalbaselines \rightskip=3pt plus2em #}\cr
% The table rows begin here.
\noalign{\hrule height2pt depth2pt \vskip3pt}
% The header row spans all the columns.
\multispan5\bf Some Choice Edible Mushrooms\hfil\strut\cr
\noalign{\vskip3pt} \tablerule
\omit&height 3pt&\omit&&\omit\cr
\bf Botanical&&\bf Common&&\omit \bf Identifying \hfillcr
\noalign{\vskip -2pt}/, close up lines of heading
\bf Name&&\bf Name &&\omit \bf Characteristics \hfillcr
\tableskip Pleurotus ostreatus&&0Oyster mushroom&&
Grows in shelf\kern 1pt like clusters on stumps or logs,
% without the kern, the ‘f’ and ‘1’ would be too close
pink-gray oyster-shaped caps, stem short or absent.\cr
\tableskip Lactarius hygrophoroides&&Milky hygroph&&
Butterscotch-brown cap and stem, copious white latex,
often on ground in woods near streams.\cr
\tableskip Morchella esculenta&&White morel&&Conical cap
with black pits and white ridges; no gills. Often found
near old apple trees and dying elms in the spring.\cr
\tableskip Boletus edulus&&King bolete&&Reddish-brown to
tan cap with yellow pores (white when young),
bulbous stem, often near conifers, birch, or~aspen.\cr
\tableskip \tablerule \noalign{\vskip 2pt} \tablerule
Hbye

21 May 2013 10:27 a.m.

TEX for the Impatient NO 58

38 Ezamples \ §3

Example 9: Typesetting mathematics

For a spherical triangle with sides a, b, and ¢, and opposite angles «,
B, and ~, we have:

cosa = —cos Bcosy +sinfSsinycosa (Law of Cosines)

and:

o —coso - cos(o — a) X
tan — = b 1 ,
an 2 \/cos(o — ﬂ) 'COS(G‘ _ ,y)a where o 2(0, + b+ C)

We also have:

. —e
sinx = -
27
and: - . .
sin ax sin bx Ta .
— de =—, ifa<b
0 x 2

The number of combinations ,,C,. of n things taken r at a time is:

r(r—1)---(1) Corl(n—r)!

C(n,r)=nCpr = (Z) nn—1)---(n—r+1) n!

The value of the determinant D of order n:

a1 ai2 oo Qln

a1 a922 ... Q2p
D pr—

an1 ap2 ce. Opp

is defined as the sum of n! terms:

Z (:t) aliagj o Ank

where ¢, 7, ..., k take on all possible values between 1 and n, and the
sign of the product is + if the sequence i, j, ..., k is an even permutation
and — otherwise. Moreover:

n

Q) =My > Y wibiyy;, B=|by| =B

n
i=2 j=2

21 May 2013 10:27a.m.

TEX for the Impatient N© 59

Example 9: Typesetting mathematics 39

\xmpheader 9/{Typesetting mathematics}’ see p. 21
For a spherical triangle with sides a, b, and c, and
opposite angles α, β, and γ, we have:
$$\cos \alpha = -\cos \beta \cos \gamma +
\sin \beta \sin \gamma \cos \alpha \quad
\hbox{(Law of Cosines)}$$
and:
$$\tan {\alpha \over 2} = \sqrt{
{- \cos \sigma \cdot \cos(\sigma - \alpha)} \over
{\cos (\sigma - \beta) \cdot \cos (\sigma - \gamma)}},\quad
\hbox{where $\sigma = {1 \over 2}(a+b+c)$}$$
We also have:$$\sin x = {{e"{ix}-e~{-ix}}\over 2i}$$
and:
$$\int _0 “\infty {{\sin ax \sin bxF\over{x~"2}}\,dx
% The \, above produces a thin space
= {\pi a\over 2}, \quad \hbox{if $a < b$}$$

\noindent The number of combinations ${}_nC_r$ of n
things taken r at a time is:
$$C(n,r) = {}_nC_r = {n \choose r} =
{{n(®-1) \cdots (n-r+1)} \over {r(r-1) \cdots (1)}} =
{{n!'M\over {r!(n-r)!}}$$

\noindent

The value of the determinant D of order n:

$$D = \left|\matrix{a_{11}&a_{12}&\1ldots&a_{1n}\cr
a_{21}&a_{22}&\1dots&a_{2n}\cr
\vdots&\vdots&\ddots&\vdots\cr
a_{n1}&a_{n2}&\ldots&a_{nn}\cr}\right| $$

is defined as the sum of $n!$ terms:

$$\sum\>(\pm)\>a_{1ita_{2j} \ldots a_{nk}$$

% The \> above produces a medium space.

where i, j, \dots, k\/ take on all possible values

between 1 and n, and the sign of the product is

$+$ if the sequence i, j, \dots, k\/ is an

even permutation and $-$ otherwise. Moreover:

$$Q(\xi) = \lambda_1 y_1"2 \sum_{i=2}"n \sum_{j=2}"n y_i

b_{ij} y_j,\qquad B = \Vert b_{ij} \Vert = B’$$

\bye

21 May 2013 10:27 a.m.

TEX for the Impatient NO© 60

40 Ezamples \ §3

Example 10: More mathematics

The absolute value of X, |z|, is defined by:

T if x> 0;
2] =1 &)
—z, otherwise.

Now for some numbered equations. It is the case that for &k > 0:

2k times
2 e,
= =%z -2 (1)

Here’s an example that shows some spacing controls, with a number
on the left:

(20) [u][v][w] [] [y] [2]

The amount of space between the items in brackets gradually increases
from left to right. (We’ve made the space between the first two items be
less than the natural space.) It is sometimes the case that

(2b) uy + tuly = ub + tuf

Q|
N
SN

Q

The result is of order O(nloglogn). Thus

n

Zl‘i:$1+Z‘2+"'+$n:Sum(xlax27-"7xn)' (3)

i=1

and
dx dy = r dr db. (4)

The set of all g such that ¢ < 0 is written as:

{q¢lg<0}

Thus
VaIy P(z,y) = 323y P(x,y)

where ot
P(z,y) = any predicate in x and y.

21 May 2013 10:27a.m.

TEX for the Impatient N©° 61

Ezxamples 41

\xmpheader 10/{More mathematicsl}) see p.21

The absolute value of X, $Ix|$, is defined by:

$$1x| = \cases{x, &if $x\ge 0$;\cr

-x,&%otherwise.\cr}$$

Now for some numbered equations.

It is the case that for $k \ge 0$:

$$x~{k"2}=\overbrace{x\>x\>\cdots\> x}"{2k\ \rm times}
\eqno (1)$$

Here’s an example that shows some spacing controls, with
a number on the left:

$$[ul\! [v] [wI\, [x]\>[y]\; [2]\leqno(2a)$$

The amount of space between the items in brackets
gradually increases from left to right. (We’ve made
the space between the first two items be {\it less\/}
than the natural space.)

It is sometimes the case that $$\leqalignno{

w_1 + tu’’_2 &= u’_2 + tu’’_1&(2b)\cr

\hat\imath &\ne \hat \jmath&(2c)\cr

\vec {\vphantom{b}al}&\approx \vec b\cr}s

% The \vphantom is an invisible rule as tall as a ‘b’.
The result is of order $0(n \log\log n)$. Thus
$$\sum_{i=1}"n x_i = x_1+x_2+\cdots+x_n

= {\rm Sum}(x_1,x_2,\1dots,x_n). \equno(3)$$

and

$$dx\,dy = r\,dr\,d\theta\!.\eqno(4)$$

The set of all g such that $q\le0$ is written as:
$$\{\,q\mid q\leO\, \1}$$

Thus

$$\forall x\exists y\;P(x,y)\Rightarrow

\exists x\exists y\;P(x,y)$$

where

$$P(x,y) \buildrel \rm def \over \equiv

\hbox{\rm any predicate in x and y} . $$

\bye

21 May 2013 10:27 a.m.

TEX for the Impatient N© 62

21 May 2013 10:27a.m.

TEX for the Impatient NO© 63

Concepts

4
B

This part of the book contains definitions and explanations of the concepts
that we use in describing TEX. The concepts include both technical terms
that we use in explaining the commands and important topics that don’t
fit elsewhere in the book.

The concepts are arranged alphabetically. The inside back cover of the
book contains a complete list of concepts and the pages on which they are
explained. We suggest that you make a copy of the inside back cover and
keep it nearby so that you’ll be able to identify and look up an unfamiliar
concept immediately. As far as possible, we’ve kept our terminology
consistent with that of The TEXbook.

active character. An active character is a character that has a def-
inition, e.g., a macro definition, associated with it. You can think of
an active character as a special kind of control sequence. When TEX en-
counters an active character, it executes the definition associated with the
character. If TEX encounters an active character that does not have an as-
sociated definition, it will complain about an undefined control sequence.

An active character has a category code of 13 (the value of \active).
To define an active character, you should first use the \catcode command
(p- 251) to make it active and then provide the definition of the character,
using a command such as \def, \let, or \chardef. The definition of an
active character has the same form as the definition of a control sequence.
If you try to define the macro for an active character before you make the
character active, TEX will complain about a missing control sequence.

For example, the tilde character (7) is defined as an active character in
plain TEX. It produces a space between two words but links those words

21 May 2013 10:27 a.m.

TEX for the Impatient NO© 64

44 Concepts \ §4

so that TEX will not turn the space into a line break. Plain TEX defines
*~’ by the commands:

\catcode ‘~ = \active \def~{\penalty10000\ 3}
(The \penalty inhibits a line break and the ‘\.,” inserts a space.)

alignment. An alignment is a construct for aligning material, such as a
table, in columns or rows. To form an alignment you need to (a) describe
the layout of the columns or rows and (b) tell TEX what material goes
into the columns or rows. A tabbing alignment or a horizontal alignment
is organized as a sequence of rows; a vertical alignment is organized as a
sequence of columns. We first describe tabbing and horizontal alignments
and then more briefly describe vertical alignments.

Tabbing alignments are defined by plain TEX. They are simpler but less
flexible than horizontal alignments. Tabbing and horizontal alignments
differ principally in how you describe their layouts.

To construct a tabbing alignment you first issue a \settabs command
(p.176) that specifies how TEX should divide the available horizontal
space into columns. Then you provide a sequence of rows for the table.
Each row consists of a \+ control sequence (p.176) followed by a list of
“entries”, i.e., row/column intersections. Adjacent entries in a row are
separated by an ampersand (&). The end of a row is indicated by \cr
after its last entry. If a row has fewer entries than there are columns in
the alignment, TEX effectively fills out the row with blank entries.

As long as it’s preceded by a \settabs command, you can put a row
of a tabbing alignment anywhere in your document. In particular, you
can put other things between the rows of a tabbing alignment or describe
several tabbing alignments with a single \settabs. Here’s an example of
a tabbing alignment:

{\hsize = 1.7 in \settabs 2 \columns
\+cattle&herd\cr
\+fish&school\cr
\+lions&pride\cr}

The \settabs 2 \columns command in this example (p.176) tells TEX
to produce two equally wide columns. The line length is 1.7 inches. The
typeset alignment looks like this:

cattle herd
fish school
lions pride

There’s another form of tabbing alignment in which you specify the
column widths with a template. The column widths in the template
determine the column widths in the rest of the alignment:

{\settabs\+cattle\quad&school\cr

21 May 2013 10:27a.m.

TEX for the Impatient

alignment 45

\+cattle&herd\cr
\+fish&school\cr
\+lions&pride\cr}

Here’s the result:

cattle herd
fish school
lions pride

Horizontal alignments are constructed with \halign (p.178). TEX ad-
justs the column widths of a horizontal alignment according to what is in
the columns. When TEX encounters the \halign command that begins a
horizontal alignment, it first examines all the rows of the alignment to see
how wide the entries are. It then sets each column width to accommodate
the widest entry in that column.

A horizontal alignment governed by \halign consists of a “preamble”
that indicates the row layout followed by the rows themselves.

= The preamble consists of a sequence of templates, one for each col-
umn. The template for a column specifies how the text for that
column should be typeset. Each template must include a single #
character to indicate where TEX should substitute the text of an en-
try into the template. The templates are separated by ampersands
(&), and the end of the preamble is indicated by \cr. By providing
an appropriate template you can obtain effects such as centering a
column, left or right justifying a column, or setting a column in a
particular font.

» The rows have the same form as in a tabbing alignment, except that
you omit the \+ at the beginning of each row. As before, entries
are separated by & and the end of the row is indicated by \cr. TEX
treats each entry as a group, so any font-setting command or other
assignment in a column template is in effect only for the entries in
that column.

The preamble and the rows must all be enclosed in the braces that follow
\halign. Each \halign alignment must include its own preamble.
For example, the horizontal alignment:

\tabskip=2pc
\halign{\hfil#\hfil &\hfil#\hfil &\hfil#\hfil \cr
&&\it Table\cr
\noalign{\kern -2pt}
\it Creature&\it Victual&\it Position\cr
\noalign{\kern 2pt}
Alice&crumpet&lefti\cr
Dormouse&muffing&middle\cr
Hatter&tea&right\cr}

N© 65

21 May 2013 10:27 a.m.

| TEX for the Impatient N©O 66
46 Concepts \ §4
produces the result:
Table
Creature Victual Position
Alice crumpet left
Dormouse muffin middle
Hatter tea right

The \tabskip (p.184) in this example tells TEX to insert 2pc of glue
between the columns. The \noalign (p.183) commands tell TEX to insert
vertical mode material between two rows. In this example we've used
\noalign to produce some extra space between the title rows and the
data rows, and also to bring “Table” and “Position” closer together. (You
can also use \noalign before the first row or after the last row.)

You can construct a vertical alignment with the \valign command
(p-179). A vertical alignment is organized as a series of columns rather
than as a series of rows. A vertical alignment follows the same rules
as a horizontal alignment except that the roles of rows and columns are
interchanged. For example, the vertical alignment:

{\hsize=0.6in \parindent=0pt
\valign{#\strut&#\strut&#\strut\cr

one&twodthree\cr
four&five&six\cr
seven&eight&nine\cr
ten&eleven\cr}}
yields:
one four seven ten
two five eight eleven
three six nine

The \strut commands (p.167) in the template are necessary to get the
entries in each row to line up properly, i.e., to have a common baseline,
and to keep the distance between baselines uniform.

anatomy of TX. The TEXbook describes the way that TEX processes
its input in terms of TEX’s “digestive tract”—its “eyes”, “mouth”, “gul-
let”, “stomach”, and “intestines”. Knowing how this processing works
can be helpful when you're trying to understand subtle aspects of TEX’s
behavior as it’s digesting a document.

» Using its “eyes”, TEX reads characters from input files and passes
them to its mouth. Since an input file can contain \input commands
(p.-247), TeX can in effect “shift its gaze” from one file to another.

» Using its “mouth”, TEX assembles the characters into tokens and
passes them to its gullet. Each token is either a control sequence or
a single character. A control sequence always starts with an escape

21 May 2013 10:27a.m.

TEX for the Impatient NO 67

anatomy of TpX 47

character. Note that spaces and ends-of-line are characters in their
own right, although TEX compresses a sequence of input spaces into
a single space token. See pages 46-47 of The TEXbook for the rules
by which TEX assembles characters into tokens.

» Using its “gullet”, TEX expands any macros, conditionals, and similar
constructs that it finds (see pages 212-216 of The TgXbook) and
passes the resulting sequence of tokens to TEX’s stomach. Expanding
one token may yield other tokens that in turn need to be expanded.
TEX carries out this expansion from left to right unless the order is
modified by a command such as \expandafter (p.233). In other
words, TEX’s gullet always expands the leftmost unexpanded token
that it has not yet sent to TEX’s stomach.

» Using its “stomach”, TEX processes the tokens in groups. Each group
contains a primitive command followed by its arguments, if any.
Most of the commands are of the “typeset this character” variety,
so their groups consist of just one token. Obeying the instructions
given by the commands, TEX’s stomach assembles larger and larger
units, starting with characters and ending with pages, and passes the
pages to TEX’s intestines. TEX’s stomach handles the tasks of line
breaking—i.e., breaking each paragraph into a sequence of lines—
and of page breaking—i.e., breaking a continuous sequence of lines
and other vertical mode material into pages.

» Using its “intestines”, TEX transforms the pages produced by its
stomach into a form intended for processing by other programs. It
then sends the transformed output to the .dvi file.

Most of the time you can think of the processes that take place in TEX’s
eyes, mouth, gullet, stomach, and intestines as happening one after the
other. But the truth of the matter is that commands executed in TEX’s
stomach can influence the earlier stages of digestion. For instance, when
TEX’s stomach encounters the \input command (p.247), its eyes start
reading from a different file; when TEX’s stomach encounters a \catcode
command (p.251) specifying a category code for a character ¢, the in-
terpretation of ¢ by TEX’s mouth is affected. And when TEX’s stomach
encounters a macro definition, the expansions carried out in TEX’s gul-
let are affected.

You can understand how the processes interact by imagining that each
process eagerly gobbles up the output of its predecessor as soon as it
becomes available. For instance, once TEX’s stomach has seen the last
character of the filename in an \input command, TEX’s gaze immediately
shifts to the first character of the specified input file.

21 May 2013 10:27 a.m.

TEX for the Impatient NO 68

48 Concepts \ §4

argument. An argument contains text that is passed to a command.
The arguments of a command complete the description of what the com-
mand is supposed to do. The command can either be a primitive com-
mand or a macro.

Each primitive command has its own convention about the form of its
arguments. For instance, the sequence of tokens:

\hskip 3pc plus lem

consists of the command ‘\hskip’ and the arguments ‘3pc plus lem’.
But if you were to write:

\count1l 3pc plus lem

you’d get an entirely different effect. TEX would treat ‘\count11’ as a
command with argument ‘3’; followed by the ordinary text tokens ‘pc
plus lem’ (because count registers expect a number to be assigned to
them)—probably not what you intended. The effect of the command, by
the way, would be to assign 3 to count register 11 (see the discussion of
\count, p.242).

Macros, on the other hand, all follow the same convention for their ar-
guments. Each argument passed to a macro corresponds to a parameter
in the definition of that macro. A macro parameter is either “delimited”
or “undelimited”. The macro definition determines the number and na-
ture of the macro parameters and therefore the number and nature of the
macro arguments.

The difference between a delimited argument and an undelimited argu-
ment lies in the way that TEX decides where the argument ends.

» A delimited argument consists of the tokens from the start of the
argument up to, but not including, the particular sequence of to-
kens that serves as the delimiter for that argument. The delimiter
is specified in the macro definition. Thus you supply a delimited
argument to a macro by writing the argument itself followed by the
delimiter. A delimited argument can be empty, i.e., have no text at
all in it. Any braces in a delimited argument must be paired prop-
erly, i.e., every left brace must have a corresponding right brace and
vice versa.

» An undelimited argument consists of a single token or a sequence
of tokens enclosed in braces, like this: ‘{Here is {thel} text.}’.
Despite appearances, the outer braces don’t form a group—TEX uses
them only to determine what the argument is. Any inner braces, such
as the ones around ‘the’, must be paired properly. If you make a
mistake and put in too many right braces, TEX will complain about
an unexpected right brace. TEX will also complain if you put in too
many left braces, but you'll probably get that complaint long after
the place where you intended to end the argument (see p. 275).

21 May 2013 10:27a.m.

TEX for the Impatient NO© 69

ASCII 49

See “macro” (p.75) for more information about parameters and argu-
ments. You'll find the precise rules pertaining to delimited and undelim-
ited arguments in pages 203-204 of The TEXbook.

ASCII. ASCII is the abbreviation of “American Standard Code for In-
formation Interchange”. There are 256 ASCII characters, each with its
own code number, but the meanings of only the first 128 have been stan-
dardized. You can find these meanings in an ASCII “code table” such as
the one on page 367 of The TEXbook. Characters 32-126 are “printable
characters”, such as letters, numbers, and punctuation marks. The re-
maining characters are “control characters” that are typically used (in the
computer industry, not in TEX) to control input/output and data commu-
nications devices. For instance, ASCII code 84 corresponds to the letter
‘T’, while ASCII code 12 corresponds to the “form feed” function (in-
terpreted by most printers as “start a new page”). Although the ASCII
standard specifies meanings for the control characters, many manufac-
turers of equipment such as modems and printers have used the control
characters for purposes other than the standard ones.

The meaning of a character in TEX is usually consistent with its mean-
ing in standard ASCII, and fonts that contain ASCII printable characters
usually have those characters in the same positions as their ASCII coun-
terparts. But some fonts, notably those used for math, replace the ASCII
printable characters by other characters unrelated to the ASCII charac-
ters. For instance, the Computer Modern math font cmsy10 has the math
symbol ‘Y’ in place of the ASCII digit ‘8’.

assignment. An assignment is a construct that tells TEX to assign
a value to a register, to one of its internal parameters, to an entry in
one of its internal tables, or to a control sequence. Some examples of
assignments are:

\tolerance = 2000
\advance\count12 by 17
\lineskip = 4pt plus 2pt
\everycr = {\hskip 3pt \relax}
\catcode\‘@ = 11

\let\graf = \par

\font\myfont = cmbx12

The first assignment indicates that TEX should assign the numeric
value 2000 to the numeric parameter \tolerance, i.e., make the value
of \tolerance be 2000. The other assignments are similar. The ‘=’
and the spaces are optional, so you could also write the first assignment
more tersely as:

\tolerance2000

21 May 2013 10:27 a.m.

TEX for the Impatient NO 70

50 Concepts \ §4

See pages 276277 of The TEXbook for the detailed syntax of assign-
ments.

badness. The badness of a line is a measure of how far the interword
spaces in the line deviate from their natural values, i.e., the values speci-
fied in the fonts used in the line. The greater the deviation, the greater
the badness. Similarly, the badness of a page is a measure of how far the
spaces between the boxes that make up the page deviate from their ideal
values. (Ordinarily, most of these boxes are single lines of paragraphs.)

More precisely, the badness is a measure of how much the glue associ-
ated with these spaces needs to stretch or shrink to fill the line or page
exactly. TEX computes the badness as approximately 100 times the cube
of the ratio by which it must stretch or shrink the glue in order to compose
a line or a page of the required size. For example, stretching the glue by
twice its stated stretch yields a ratio of 2 and a badness of 800; stretching
it by half its stated stretch yields a ratio of .5 and a badness of 13. TEX
treats a badness greater than 10000 as equal to 10000.

TEX uses the badness of a line when it’s breaking a paragraph into lines
(see “line break”, p. 74). It uses this information in two stages:

1) When TgX is choosing line breaks, it will eventually accept lines
whose badness is less than or equal to the value of \tolerance
(p.123). If TEX cannot avoid setting a line whose badness exceeds
this value, it will set it as an underfull or overfull hbox. TEX will set
an overfull or underfull hbox only as a last resort, i.e., only if there’s
no other way to break the paragraph into lines.

2) Assuming that all lines are tolerably bad, TEX uses the badness of
lines in order to evaluate the different ways of breaking the paragraph
into lines. During this evaluation it associates “demerits” with each
potential line. The badness increases the number of demerits. TEX
then breaks the paragraph into lines in a way that minimizes the total
demerits for the paragraph. Most often TEX arranges the paragraph
in a way that minimizes the badness of the worst line. See pages 97—
98 of The TgXbook for the details of how TEX breaks a paragraph
into lines.

TEX’s procedure for assembling a sequence of lines and other vertical
mode material into pages is similar to its procedure for line breaking.
However, assembling pages is not as complicated because TEX only con-
siders one page at a time when it looks for page breaks. Thus the only
decision it must make is where to end the current page. In contrast, when
TEX is choosing line breaks it considers several of them simultaneously.
(Most word processors choose line breaks one at a time, and thus don’t
do as good a job at it as TEX does.) See pages 111-113 of The TgXbook
for the details of how TEX chooses its page breaks.

21 May 2013 10:27a.m.

TEX for the Impatient No 71

baseline 51

baseline. The baseline of a box is an imaginary line that runs across the
box. When TEX is assembling the boxes of a horizontal list into a larger
box, it lines up the boxes in the list so that their baselines coincide. As
an analogy, think of writing on a pad of ruled paper. Each letter that you
write has an implicit baseline. In order to line up the letters horizontally,
you place them on the pad so that their baselines agree with the light
guidelines that are printed on the pad.

A box can and often does extend below its baseline. For instance, the
letter ‘g’ extends below the baseline of its box because it has a descender
(the bottom loop of the ‘g’).

box. A box is a rectangle of material to be typeset. A single character
is a box by itself, and an entire page is also a box. TEX forms a page as a
nest of boxes within boxes within boxes. The outermost box is the page
itself, the innermost boxes are mostly single characters, and single lines
are boxes that are somewhere in the middle.

TEX carries out most of its box-building activities implicitly as it con-
structs paragraphs and pages. You can construct boxes explicitly using
a number of TEX commands, notably \hbox (p. 160), \vbox (p. 161), and
\vtop (p.161). The \hbox command constructs a box by appending
smaller boxes horizontally from left to right; it operates on a horizontal
list and yields an hbox (horizontal box). The \vbox and \vtop commands
construct a box by appending smaller boxes vertically from top to bot-
tom; they operate on a vertical list and yield a vbox (vertical box). These
horizontal and vertical lists can include not just smaller boxes but several
other kinds of entities as well, e.g., glue and kerns.

A box has height, depth, and width, like this:

|

height

baseline l
reference point —» T

depth

1

< width —

The baseline is like one of the light guidelines on a pad of ruled paper.
The boxes for letters such as ‘g’ extend below the baseline; the boxes for
letters such as ‘h’ don’t. The height of a box is the distance that the box
extends above its baseline, while its depth is the distance that it extends
below its baseline. The reference point of a box is the place where its
baseline intersects its left edge.

TEX builds an hbox H from a horizontal list by assuming a reference
point for H and then appending the items in the list to H one by one from

21 May 2013 10:27 a.m.

TEX for the Impatient NO 72

52 Concepts \ §4

left to right. Each box in the list is placed so that its baseline coincides
with the baseline of H, i.e., the component boxes are lined up horizontally.!
The height of H is the height of the tallest box in the list, and the depth of
H is the depth of the deepest box in the list. The width of H is the sum of
the widths of all the items in the list. If any of these items are glue and TEX
needs to stretch or shrink the glue, the width of H will be larger or smaller
accordingly. See page 77 of The TEXbook for the details.

Similarly, TEX builds a vbox V from a vertical list by assuming a
temporary reference point for V' and then appending the items in the list
to V' one by one from top to bottom. Each box in the list is placed so
that its reference point is lined up vertically with the reference point of
V.2 As each box other than the first one is added to V, TEX puts interline
glue just above it. (This interline glue has no analogue for hboxes.) The
width of V' is the width of the widest box in the list, and the vertical
extent (height plus depth) of V' is the sum of the vertical extents of all
the items in the list.

The difference between \vbox and \vtop is in how they partition the
vertical extent of V into a height and a depth. Choosing the reference
point of V' determines that partition.

» For \vbox, TEX places the reference point on a horizontal line with
the reference point of the last component box or rule of V, except
that if the last box (or rule) is followed by glue or a kern, TEX places
the reference point at the very bottom of V.3

» For \vtop, TEX places the reference point on a horizontal line with
the reference point of the first component box or rule of V, except
that if the first box (or rule) is preceded by glue or a kern, TEX places
the reference point at the very top of V.

Roughly speaking, then, \vbox puts the reference point near the bottom
of the vbox and \vtop puts it near the top. When you want to align a
row of vboxes so that their tops line up horizontally, you should usually
use \vtop rather than \vbox. See pages 78 and 80-81 of The TgXbook
for the details of how TEX builds vboxes.

You have quite a lot of freedom in constructing boxes. The typeset
material in a box can extend beyond the boundaries of the box as it does
for some letters (mostly italic or slanted ones). The component boxes of a
larger box can overlap. A box can have negative width, depth, or height,
though boxes like that are not often needed.

You can save a box in a box register and retrieve it later. Before
using a box register, you should reserve it and give it a name with the

L If a box is moved up or down with \raise or \lower, TEX uses its reference point
before the move when placing it.

2If a box is moved left or right with \moveleft or \moveright, TEX uses its reference
point before the move when placing it.

3 The depth is limited by the parameter \boxmaxdepth (p-163).

21 May 2013 10:27a.m.

TEX for the Impatient NO 73

category code 53

\newbox command (p.244). See “register” (p.89) for more information
about box registers.

category code. The category code of a character determines that char-
acter’s role in TEX. For instance, TEX assigns a certain role to letters,
another to space characters, and so forth. TEX attaches a code to each
character that it reads. When TEX reads the letter ‘r’, for example, it
ordinarily attaches the category code 11 (letter) to it. For simple TEX ap-
plications you won’t need to worry about category codes, but they become
important when you are trying to achieve special effects.

Category codes apply only to characters that TEX reads from input
files. Once a character has gotten past TEX’s gullet (see “anatomy of
TEX”, p.46) and been interpreted, its category code no longer matters.
A character that you produce with the \char command (p. 99) does not
have a category code because \char is an instruction to TEX to produce
a certain character in a certain font. For instance, the ASCII code for ‘\’
(the usual escape character) is 92. If you type ‘\char92 grok’, it is not
equivalent to \grok. Instead it tells TEX to typeset ‘cgrok’, where c is the
character in position 92 of the code table for the current font.

You can use the \catcode command (p.251) to reassign the category
code of any character. By changing category codes you can change the
roles of various characters. For instance, if you type ‘\catcode‘\@ = 11’,
the category code of the at sign (@) will be set to “letter”. You then can
use ‘@’ in the name of a control sequence.

Here is a list of the category codes as they’re defined in plain TEX (see
p. 55 for an explanation of the =~ notation), together with the characters
in each category:

Q
S
S
[y

Meaning

Escape character \
Beginning of group {
End of group }
Math shift $
Alignment tab &
End of line ~"M= ASCII (return)
Macro parameter #
Superscript = and ~"K
Subscript _ and “"A
9 Ignored character ~~@= ASCII (null)
10 Space and ~~I = ASCII (horizontal tab)
11 Letter A...Zanda...z
12 Other character (everything not listed above or below)
13 Active character ~ and ~"L = ASCII (form feed)
14 Comment character %
15 Invalid character —~~7? = ASCII (delete)

0 O Utk W~ O

21 May 2013 10:27 a.m.

TEX for the Impatient NO 74

54 Concepts \ §4

Except for categories 11-13, all the characters in a particular category
produce the same effect. For instance, suppose that you type:

\catcode‘\[= 1 \catcode‘\] = 2

Then the left and right bracket characters become beginning-of-group
and end-of-group characters equivalent to the left and right brace char-
acters. With these definitions ‘[a b]’ is a valid group, and so are ‘[a b}’
and ‘{a b]’.

The characters in categories 11 (letter) and 12 (other character) act as
commands that mean “produce a box containing this character typeset
in the current font”. The only distinction between letters and “other”
characters is that letters can appear in control words but “other” char-
acters can'’t.

A character in category 13 (active) acts like a control sequence all by
itself. TEX complains if it encounters an active character that doesn’t
have a definition associated with it.

If TEX encounters an invalid character (category 15) in your input, it
will complain about it.

The ‘~"K’ and ‘~~A’ characters have been included in categories 8 (sub-
script) and 9 (superscript), even though these meanings don’t follow the
standard ASCII interpretation. That’s because some keyboards, notably
some at Stanford University where TEX originated, have down arrow and
up arrow keys that generate these characters.

There’s a subtle point about the way TEX assigns category codes that
can trip you up if you’re not aware of it. TEX sometimes needs to look
at a character twice as it does its initial scan: first to find the end of
some preceding construct, e.g., a control sequence, and later to turn that
character into a token. TEX doesn’t assign the category code until its
second look at the character. For example:

\def\foo{\catcode‘\$ = 11 }% Make $ be a letter.
\foo$ % Produces a ‘$’.
\foo$ % Undefined control sequence ‘foo$’.

This bit of TEX code produces ‘$’ in the typeset output. When TEX first
sees the ‘$’ on the second line, it’s looking for the end of a control sequence
name. Since the ‘¢’ isn’t yet a letter, it marks the end of ‘\foo’. Next,
TEX expands the ‘\foo’ macro and changes the category code of ‘¢’ to 11
(letter). Then TEX reads the ‘$> “for real”. Since ‘$’ is now a letter, TEX
produces a box containing the ‘¢’ character in the current font. When
TEX sees the third line, it treats ‘$’ as a letter and thus considers it to
be part of the control sequence name. As a result it complains about an
undefined control sequence \foo$.

TEX behaves this way even when the terminating character is an end
of line. For example, suppose that the macro \fum activates the end-of-
line character. Then if \fum appears on a line ¢ by itself, TEX will first

21 May 2013 10:27a.m.

TEX for the Impatient NO 75

character 55

interpret the end of line of ¢ as the end of the \fum control sequence and
then will reinterpret the end of line of £ as an active character.

character. TgEX works with characters in two contexts: as input char-
acters, which it reads, and as output characters, which it typesets. TEX
transforms most input characters into the output characters that depict
them. For example, it normally transforms the input letter ‘h’ into the
letter ‘h’ typeset in the current font. That is not the case, however, for an
input character such as ‘$’ that has a special meaning.

TEX gets its input characters by reading them from input files (or
from your terminal) and by expanding macros. These are the only ways
that TEX can acquire an input character. Each input character has a
code number corresponding to its position in the ASCII code table. For
instance, the letter ‘T’ has ASCII code 84.

When TgEX reads a character, it attaches a category code to it. The
category code affects how TEX interprets the character once it has been
read in. TEX determines (and remembers) the category codes of the
characters in a macro when it reads the macro’s definition. As TEX
reads characters with its eyes (see “anatomy of TEX”, p. 46) it does some
“filtering”, such as condensing sequences of spaces to a single space. See
pages 46—48 of The TEXbook for the details of this filtering.

The ASCII “control characters” have codes 0-31 and 127-255. They
either don’t show up or cause strange behavior on most terminals if you
try to display them. Nonetheless they are sometimes needed in TEX in-
put, so TEX has a special notation for them. If you type ‘~~¢’, where
c is any character, you get the character whose ASCII code is either 64
greater or 64 less than ¢’s ASCII code. The largest acceptable code value
using this notation is 127, so the notation is unambiguous. Three par-
ticularly common instances of this notation are ‘"M’ (the ASCII (return)
character), ‘~~J’ (the ASCII (line feed) character) and ‘~~I’ (the ASCII
(horizontal tab) character).

TEX also has another notation for indicating ASCII code values that
works for all character codes from 0 to 255. If you type ‘"~ ~xy’, where z
and y are any of the hexadecimal digits ‘0123456789abcdef’, you get the
single character with the specified code. (Lowercase letters are required
here.) TEX opts for the “hexadecimal digits” interpretation whenever it
has a choice, so you must not follow a character like ‘~~a’ with a lowercase
hexadecimal digit—if you do, you’ll get the wrong interpretation. If you
need to use this notation you’ll find it handy to have a table of ASCII codes.

An output character is a character to be typeset. A command for pro-
ducing an output character has the meaning “Produce a box containing
character number n from the current font”, where n is determined by
the command. TEX produces your typeset document by combining such
boxes with other typographical elements and arranging them on the page.

21 May 2013 10:27 a.m.

TEX for the Impatient NO 76

56 Concepts \ §4

An input character whose category code is 11 (letter) or 12 (other)
acts as a command to produce the corresponding output character. In
addition you can get TEX to produce character n by issuing the com-
mand ‘\char n’ (p.99), where n is a number between 0 and 255. The
commands ‘h’, \char‘h, and \char104 all have the same effect. (104 is
the ASCII code for ‘h’.)

class. The class of a character specifies that character’s role in math
formulas. The class of a character is encoded in its mathcode. For exam-
ple, the equals sign ‘=’ is in class 3 (Relation). TEX uses its knowledge of
character classes to decide how much space to put between different com-
ponents of a math formula. For example, here’s a math formula shown
first as TEX normally prints it and then with the class of each character
randomly changed:

a+(b—a)=a a+ (b—a)=a

See page 218 of this book for a list of the classes and page 154 of The
TEXbook for their meanings.

command. A command instructs TEX to carry out a certain action. Every
token that reaches TEX’s stomach (see “anatomy of TEX”, p.46) acts
as a command, except for those that are parts of arguments to other
commands (see below). A command can be invoked by a control sequence,
by an active character, or by an ordinary character. It might seem odd
that TEX treats an ordinary character as a command, but in fact that’s
what it does: when TEX sees an ordinary character it constructs a box
containing that character typeset in the current font.

A command can have arguments. The arguments of a command are
single tokens or groups of tokens that complete the description of what
the command is supposed to do. For example, the command ‘\vskip
1in’ tells TEX to skip 1 inch vertically. It has an argument ‘1in’, which
consists of three tokens. The description of what \vskip is supposed to
do would be incomplete without specifying how far it is supposed to skip.
The tokens in the arguments to a command are not themselves considered
to be commands.

Some examples of different kinds of TEX commands are:

» Ordinary characters, such as ‘W, which instructs TEX to produce a
box containing a typeset ‘W’

» Font-setting commands, such as \bf, which begins boldface type

» Accents, such as \ ¢, which produces a grave accent as in ‘¢’

= Special symbols and ligatures, such as \P () and \ae (&)

» Parameters, such as \parskip, the amount of glue that TEX puts
between paragraphs

= Math symbols, such as \alpha («) and \in (€)

» Math operators, such as \over, which produces a fraction

21 May 2013 10:27a.m.

TEX for the Impatient

conditional test 57

conditional test. A conditional test is a command that tests whether
or not a certain condition is true and causes TEX either to expand or
to skip some text, depending on the outcome. The general form of a
conditional test is either:

\ifa(true text)\else(false text)\fi
or:
\ifa(true text)\fi

where « specifies the particular test. For example, \ifvmode tests the
condition that TEX is currently in a vertical mode. If the condition is
true, TEX expands (true text). If the condition is false, TEX expands
(false text) (if it’s present). Conditional tests are interpreted in TEX’s
gullet (see “anatomy of TEX”, p.46), so any expandable tokens in the in-
terpreted text are expanded after the test has been resolved. The various
conditional tests are explained in “Conditional tests” (p.235).

control sequence. A control sequence is a name for a TEX command.
A control sequence always starts with an escape character, usually a back-
slash (\). A control sequence takes one of two forms:

= A control word is a control sequence consisting of an escape character
followed by one or more letters. The control word ends when TEX
sees a nonletter. For instance, when TEX reads ‘\hfill, jthe’, it
sees six tokens: the control sequence ‘\hfill’, comma, space, ‘t’,
‘h’, ‘e’. The space after ‘\hfill’ ends the control sequence and is
absorbed by TEX when it scans the control sequence. (For the text
‘\hfill, jthe’, on the other hand, the comma both ends the control
sequence and counts as a character in its own right.)

= A control symbol is a control sequence consisting of an escape char-
acter followed by any character other than a letter—even a space or
an end of line. A control symbol is self-delimited, i.e., TEX knows
where it ends without having to look at what character comes after
it. The character after a control symbol is never absorbed by the
control symbol.

See page 12 for more information about spaces after control sequences.

TEX provides a great many predefined control sequences. The primitive
control sequences are built into the TEX computer program and thus are
available in all forms of TEX. Other predefined control sequences are
provided by plain TEX, the form of TEX described in this book.

You can augment the predefined control sequences with ones of your
own, using commands such as \def and \let to define them. Section 12
of this book contains a collection of control sequence definitions that
you may find useful. In addition, your computing facility may be able to
provide a collection of locally developed TEX macros.

No 77

21 May 2013 10:27 a.m.

TEX for the Impatient NO 78

58 Concepts \ §4

control symbol. A control symbol is a control sequence that consists
of an escape character followed by any character other than a letter—even
a space or end of line.

control word. A control word is a control sequence that consists of
an escape character followed by one or more letters.* TEX ignores any
spaces or ends-of-line that follow a control word, except to note that they
end the control word.

decimal constant. See “number” (p.82).

delimiter. A delimiter is a character that is intended to be used as a
visible boundary of a math formula. The essential property of a delimiter
is that TEX can adjust its size according to the vertical size (height plus
depth) of the subformula. However, TEX performs the adjustment only
if the delimiter appears in a “delimiter context”, namely, as an argument
to one of the commands \left, \right, \overwithdelims, \atopwith-
delims, or \abovewithdelims (see pp.201, 204). The delimiter contexts
also include any argument to a macro that uses the argument in a de-
limiter context.

For example, the left and right parentheses are delimiters. If you use
parentheses in a delimiter context around a formula, TEX makes the
parentheses big enough to enclose the box that contains the formula (as
long as the fonts you’re using have big enough parentheses). For example:

$$ \left(a \over b \right) $$

yields: "
()

Here TEX has made the parentheses big enough to accommodate the
fraction. But if you write, instead:

$$({a \over b})$$
you’ll get:
()
Since the parentheses aren’t in a delimiter context, they are not enlarged.
Delimiters come in pairs: an opening delimiter at the left of the sub-
formula and a closing delimiter at its right. You can explicitly choose a

larger height for a delimiter with the commands \bigl, \bigr, and their
relatives (p. 211).% For instance, in order to get the displayed formula:

(f(z)—2)(fly) —v)

4 A “letter” here has the strict meaning of a character with category code 11.

5 Plain TEX defines the various \big commands by using \left and \right to pro-
vide a delimiter context. It sets the size by constructing an empty formula with
the desired height.

21 May 2013 10:27a.m.

TEX for the Impatient NO 79

delimiter 59

in which the outer parentheses are a little bigger than the inner ones,
you should write:

$$\bigl(£(x) - x \bigr) \bigl(£(y) - y \bigr)s

The 22 plain TEX delimiters, shown at their normal size, are:

OULLITTO /NI e

Here they are at the largest size provided explicitly by plain TEX (the

00T A

The delimiters (except for ¢ (’, *)’, and ‘/’) are among the symbols listed on
pages 191-192. They are listed in one place on page 146 of The TEXbook.
A delimiter can belong to any class. For a delimiter that you en-
large with \bigl, \bigr, etc., the class is determined by the command:
“opener” for l-commands, “closer” for r-commands, “relation” for m-
commands, and “ordinary symbol” for g-commands, e.g., \Big.
You can obtain a delimiter in two different ways:

1) You can make a character be a delimiter by assigning it a nonnegative
delimiter code (see below) with the \delcode command (p.251).
Thereafter the character acts as a delimiter whenever you use it in a
delimiter context.b

2) You can produce a delimiter explicitly with the \delimiter com-
mand (p.204), in analogy to the way that you can produce an ordi-
nary character with the \char command or a math character with
the \mathchar command. The \delimiter command uses the same
delimiter codes that are used in a \delcode table entry, but with an
extra digit in front to indicate a class. It’s rare to use \delimiter
outside of a macro definition.

A delimiter code tells TEX how to search for an appropriate output
character to represent a delimiter. The rules for this search are rather
complicated (see pages 156 and 442 of The TEXbook). A complete under-
standing of these rules requires knowing about the organization of font
metrics files, a topic that is not just beyond the scope of this book but
beyond the scope of The TEXbook as well.

In essence the search works like this. The delimiter code specifies
a “small” output character and a “large” output character by provid-
ing a font position and a font family for each (see p.251). Using this
information, TEX can find (or construct) larger and larger versions of
the delimiter. TEX first tries different sizes (from small to large) of the

6 1t’s possible to use a character with a nonnegative delimiter code in a context where
it isn’t a delimiter. In this case TEX doesn’t perform the search; instead it just uses
the character in the ordinary way (see page 156 of The TEXbook).

21 May 2013 10:27 a.m.

TEX for the Impatient NO© 80

60 Concepts \ §4

“small” character in the “small” font and then different sizes (also from
small to large) of the “large” character in the “large” font, seeking one
whose height plus depth is sufficiently large. If none of the characters it
finds are large enough, it uses the largest one that it finds. It’s possi-
ble that the small character, the large character, or both have been left
unspecified (indicated by a zero in the appropriate part of the delimiter
code). If only one character has been specified, TEX uses that one. If
neither has been specified, it replaces the delimiter by a space of width
\nulldelimiterspace.

demerits. TEX uses demerits as a measure of how undesirable a line is
when it’s breaking a paragraph into lines (see “line break”, p.74). The
demerits of a line are affected both by the badness of the line and by
penalties associated with the line. TEX’s goal in choosing a particular
arrangement of lines is to minimize the total demerits for the paragraph,
which it computes by adding up the demerits for the individual lines.
See pages 97-98 of The TEXbook for the details of how TEX breaks a
paragraph into lines. TEX does not use demerits when it’s choosing page
breaks; instead, it uses a similar measure known as the “cost” of a par-
ticular page break.

depth. The depth of a box is the distance that the box extends be-
low its baseline.

dimension. A dimension specifies a distance, that is, a linear measure
of space. You use dimensions to specify sizes of things, such as the length
of a line. Printers in English-speaking countries traditionally measure
distance in points and picas, while printers in continental Europe tradi-
tionally measure distance in didot points and ciceros. You can use these
units or others, such as inches, that may be more familiar to you. The
font-independent units of measure that TEX understands are:

pt point (72.27 points = 1 inch)
pc pica (1 pica = 12 points)
bp big point (72 big points = 1 inch)

in inch

cm centimeter (2.54 centimeters = 1 inch)

mm millimeter (10 millimeters = 1 centimeter)
dd didét point (1157 didét points = 1238 points)
cc cicero (1 cicero = 12 didét points)

sp scaled point (65536 scaled points = 1 point)

Two additional units of measure are associated with every font: ‘ex’,
a vertical measure usually about the height of the letter ‘x’ in the font,
and ‘em’, a horizontal measure usually equal to the point size of the font
and about the width of the letter ‘M’ in the font. Finally, TEX provides

21 May 2013 10:27a.m.

TEX for the Impatient NO 81

display math 61

three “infinite” units of measure: ‘£il’, ‘£i11’, and ‘fil11l’, in increasing
order of strength.

A dimension is written as a factor, i.e, a multiplier, followed by a
unit of measure. The factor can be either a whole number or a decimal
constant containing a decimal point or decimal comma. The factor can
be preceded by a plus or minus sign, so a dimension can be positive or
negative. The unit of measure must be there, even if the number is zero.
Spaces between the number and the unit of measure are permitted but
not required. You'll find a precise definition of a dimension on page 270
of The TEXbook. Here are some examples of dimensions:

5.9in Opt -2,5 pc 2fil
The last of these represents a first-order infinite distance.

An infinite distance outweighs any finite distance or any weaker infinite
distance. If you add 10in to .001fil, you get .001fil; if you add 2fil
to =1£il1l you get -1£ill; and so forth. TEX accepts infinite distances
only when you are specifying the stretch and shrink of glue.

TEX multiplies all dimensions in your document by a magnification
factor f/1000, where f is the value of the \mag parameter. Since the
default value of \mag is 1000, the normal case is that your document
is typeset just as specified. You can specify a dimension as it will be
measured in the final document independent of magnification by putting
‘true’ in front of the unit. For instance, ‘\kern 8 true pt’ produces a
kern of 8 points whatever the magnification.

display math. The term display math refers to a math formula that
TEX places on a line by itself with extra space above and below so as to
set it off from the surrounding text. A display math formula is enclosed
by ‘$$’s. TEX reads display math in display math mode.

escape character. An escape character introduces a control sequence.
The escape character in plain TEX is the backslash (\). You can change
the escape character from c¢; to co by reassigning the category codes of
c1 and c¢p with the \catcode command (p.251). You can also define
additional escape characters similarly. If you want to typeset material
containing literal escape characters, you must either (a) define a control
sequence that stands for the printed escape character or (b) temporarily
disable the escape character by changing its category code, using the
method shown on page 2. The definition:

\def\\{\backslash}

is one way of creating a control sequence that stands for ‘\’ (a backslash
typeset in a math font).

You can use the \escapechar parameter (p. 226) to specify how the es-
cape character is represented in synthesized control sequences, e.g., those
created by \string and \message.

21 May 2013 10:27 a.m.

TEX for the Impatient NO 82

62 Concepts \ §4

family. A family is a group of three related fonts used when TEX is
in math mode. Outside of math mode, families have no effect. The
three fonts in a family are used for normal symbols (text size), subscripts
and superscripts (script size), and sub-subscripts, super-superscripts, etc.
(scriptscript size). For example, the numeral ‘2’ set in these three fonts
would give you ‘2’; ‘2’ and ‘2’ (in plain TEX). Ordinarily you would set
up the three fonts in a family as different point sizes of the same typeface,
but nothing prevents you from using different typefaces for the three fonts
as well or using the same font twice in a family.

TEX provides for up to sixteen families, numbered 0-15. For example,
family 0 in plain TEX consists of 10-point roman for text, 7-point roman for
script, and 5-point roman for scriptscript. Plain TEX also defines family
1 to consist of math italic fonts and reserves families 2 and 3 for special
symbols and math extensions respectively.” If you need to define a family
for yourself, you should use the \newfam command (p. 244) to get the num-
ber of a family that isn’t in use, and the \textfont, \scriptfont, and
\scriptscriptfont commands (p. 210) to assign fonts to that family.

file. A file is a stream of information that TEX interprets or creates.
Files are managed by the operating system that supervises your TEX run.
TEX deals with files in four different contexts:

1) A “source file” is one that TEX reads with its “eyes” (see “anatomy
of TEX”, p.46) and interprets according to its ordinary rules. Your
primary input file—the one you specify after ‘**’ or on the command
line when you invoke TEX—is a source file, and so is any file that you
call for with an \input command (p. 247).

2) A “result file” is one that contains the results of running TEX. A
TEX run creates two result files: the .dvi file and the log file. The
.dvi file contains the information needed to print your document;
the log file contains a record of what happened during the run, in-
cluding any error messages that TEX generated. If your primary
source file is named screed.tex, your .dvi file and log file will be
named screed.dvi and screed.log.®

3) To read from a file with the \read command (p.248) you need to
associate the file with an input stream. You can have up to 16 input
streams active at once, numbered 0—15. The \read command reads
a single line and makes it the value of a designated control sequence,
so reading with \read is very different from reading with \input
(which brings in an entire file). TEX takes any input stream number

7 Families 2 and 3 are special in that their font metric files must include parameters
for math spacing.

8 This is the usual convention, but particular implementations of TEX are free to
change it.

21 May 2013 10:27a.m.

TEX for the Impatient NO 83

file name 63

not between 0 and 15 to refer to the terminal, so ‘\read16’, say, reads
the next line that you type at the terminal.

4) To write to a file with the \write command (p.249) you need to
associate the file with an output stream. You can have up to 16
output streams active at once, numbered 0-15. Input and output
streams are independent. Anything sent to an output stream with
a negative number goes to the log file; anything sent to an output
stream with a number greater than 15 goes both to the log file and
to the terminal. Thus ‘\writel6’, say, writes a line on the terminal
and also sends that line to the log file.

You must open a stream file before you can use it. An input stream file
is opened with an \openin command (p.247) and an output stream file
is opened with an \openout command (p.249). For tidiness you should
close a stream file when you're done with it, although TgX will do that
at the end of the run if you don’t. The two commands for closing a
stream file are \closein (p.248) and \closeout (p.249). An advantage
of closing a stream when you’re done with it is that you can then reuse
the stream for a different file. Doing this can be essential when you're
reading a long sequence of files.

Although you can assign numbers yourself to input and output streams,
it’s better to do it with the \newread and \newwrite (p.244) commands.
You can have more than one stream associated with a particular file, but
youll get (probably undiagnosed) garbage unless all of the streams are
input streams. Associating more than one stream with an input file can be
useful when you want to use the same input file for two different purposes.

TEX ordinarily defers the actions of opening, writing to, or closing an
output stream until it ships out a page with \shipout (see page 227 of The
TEXbook for the details). This behavior applies even to messages written
to the terminal with \write. But you can get TEX to perform an action
on an output stream immediately by preceding the action command with
\immediate (p.250). For example:

\immediate\writel16{Do not pass GO! Do not collect $200!'}

file name. A file name names a file that is known to the operating
system that in turn supervises your TEX run. The syntax of a file name
does not follow the usual rules of TEX syntax, and in fact it is different in
different implementations of TEX. In particular, most TEX implementa-
tions consider a file name to be terminated by a blank or an end of line.
Thus TEX is likely to misinterpret ‘{\input chapter2}’ by taking the
right brace as part of the file name. As a general rule, you should follow
a file name by a blank or the end of the line as in ‘{\input chapter2 }’.

21 May 2013 10:27 a.m.

TEX for the Impatient NO 84

64 Concepts \ §4

font. A font in TEX is a collection of up to 256 output characters,
usually having the same typeface design, style (roman, italic, bold, con-
densed, etc.), and point size.” The Computer Modern fonts that generally
come with TEX have only 128 characters. The colophon on the last page
of this book describes the typefaces that we used to set this book.

For instance, here is the alphabet in the Palatino Roman 10 point font:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

And here it is in the Computer Modern Bold Extended 12 point font:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

The characters in a font are numbered. The numbering usually agrees
with the ASCII numbering for those characters that exist in the ASCII
character set. The code table for each font indicates what the character
with code n looks like in that font. Some fonts, such as the ones used for
mathematical symbols, have no letters at all in them. You can produce
a box containing the character numbered n, typeset in the current font,
by writing ‘\char n’ (p.99).

In order to use a font in your document, you must first name it with
a control sequence and load it. Thereafter you can select it by typing
that control sequence whenever you want to use it. Plain TEX provides a
number of fonts that are already named and loaded.

You name and load a font as a single operation, using a command such
as ‘\font\twelvebf=cmbx12’. Here ‘\twelvebf’ is the control sequence
that you use to name the font and ‘cmbx12’ identifies the font metrics file
cmbx12.tfm in your computer’s file system. You then can start to use
the font by typing ‘\twelvebf’. After that, the font will be in effect until
either (a) you select another font or (b) you terminate the group, if any,
in which you started the font. For example, the input:

{\twelvebf white rabbits like carrots}

will cause the cmbx12 font to be in effect just for the text ‘white rabbits
like carrots’.

You can use TEX with fonts other than Computer Modern (look at the
example on page 34 and at the page headers). The files for such fonts need
to be installed in your computer’s file system in a place where TEX can
find them. TEX and its companion programs generally need two files for
each font: one to give its metrics (cmbx12.tfm, for example) and another
to give the shape of the characters (cmbx12.pk, for example). TEX itself
uses only the metrics file. Another program, the device driver, converts

9 Plain TEX uses a special font for constructing math symbols in which the char-
acters have different sizes. Other special fonts are often useful for applications such
as typesetting logos.

21 May 2013 10:27a.m.

TEX for the Impatient N© 85

footer 65

the .dvi file produced by TEX to a form that your printer or other output
device can handle. The driver uses the shape file (if it exists).

The font metrics file contains the information that TEX needs in order
to allocate space for each typeset character. Thus it includes the size
of each character, the ligatures and kerns that pertain to sequences of
adjacent characters, and so on. What the metrics file doesn’t include is
any information about the shapes of the characters in the font.

The shape (pixel) file may be in any of several formats. The extension
part of the name (the part after the dot) tells the driver which format the
shape file is in. For example, cmbx12.pk might be the shape file for font
cmbx12 in packed format, while cmbx12.gf might be the shape file for font
cmbx12 in generic font format. A shape file may not be needed for a font
that’s resident in your output device.

footer. A footer is material that TEX puts at the bottom of every page,
below the text of that page. The default footer in plain TEX is a centered
page number. Ordinarily a footer consists of a single line, which you can
set by assigning a token list to \footline (p.143). See page 274 for a
method of producing multiline footers.

format file. A format file is a file that contains an image of TEX’s
memory in a form in which it can be reloaded quickly. A format file can be
created with the \dump command (p. 263). The image contains a complete
record of the definitions (of fonts, macros, etc.) that were present when
the dump took place. By using virtex, a special “virgin” form of TEX,
you can then reload the format file at high speed and continue in the same
state that TEX was in at the time of the dump. The advantage of a format
file over an ordinary input file containing the same information is that TpX
can load it much faster.

Format files can only be created by initex, another special form of
TEX intended just for that purpose. Neither virtex nor initex has any
facilities other than the primitives built into the TEX program itself.

A preloaded form of TEX is one that has a format file already loaded
and is ready to accept user input. The form of TEX that’s called tex often
has the plain TEX definitions preloaded. (Plain TEX is ordinarily available
in two other forms as well: as a format file and as a TEX source file. In
some environments, tex is equivalent to calling virtex and then loading
plain.) Creating preloaded forms of TEX requires a special program; it
cannot be done using only the facilities of TEX itself.

global. A global definition is effective until the end of the document
or until it is overridden by another definition, even when it occurs within
a group. Thus a global definition is unaffected by group boundaries. You
can make any definition global by prefixing it with the \global command
(p. 228) unless \globaldefs (p.228) is negative.

21 May 2013 10:27 a.m.

TEX for the Impatient NO 86

66 Concepts \ §4

There’s a special way of making a macro definition global. Normally
you define a macro using either the \def command or the \edef command
(p-230). If you use \gdef or \xdef instead of \def and \edef respec-
tively, the macro definition will be global. That is, ‘\gdef’ is equivalent
to ‘\global\def’ and ‘\xdef’ is equivalent to ‘\global\edef’.

glue. Glue is blank space that can stretch or shrink. Glue gives TEX
the flexibility that it needs in order to produce handsome documents.
Glue comes in two flavors: horizontal glue and vertical glue. Horizon-
tal glue occurs within horizontal lists, while vertical glue occurs within
vertical lists. You can produce a glue item either implicitly, e.g., with
an interword space, or explicitly, e.g., with the \hskip command. TEX
itself produces many glue items as it typesets your document. We’ll just
describe horizontal glue—vertical glue is analogous.

When TEX assembles a list of boxes and glue into a larger unit, it ad-
justs the size of the glue to meet the space requirements of the larger
unit. For instance, TEX ensures that the right margin of a page is uni-
form by adjusting the horizontal glue within lines. Similarly, it ensures
that different pages have the same bottom margin by adjusting the glue
between blocks of text such as paragraphs and math displays (where the
change is least likely to be conspicuous).

A glue item has a natural space—the size it “wants to be”. Glue also
has two other attributes: its stretch and its shrink. You can produce
a specific amount of horizontal glue with the \hskip command (p. 155).
The command \hskip 6pt plus 2pt minus 3pt produces a horizontal
glue item whose natural size is 6 points, whose stretch is 2 points, and
whose shrink is 3 points. Similarly, you can produce a specific amount of
vertical glue with the \vskip command (p. 155).

The best way to understand what stretch and shrink are about is to see
an example of glue at work. Suppose you’re constructing an hbox from
three boxes and two glue items, as in this picture:

boz glue box glue box
size 6 size 10
stretch 4 stretch 8
shrink 1 shrink 3
width 4| width 6 width 5 width 10 width 4
width 29

The units of measurement here could be points, millimeters, or anything
else. If the hbox is allowed to assume its natural width, then each glue
item in the box also assumes its natural width. The total width of the
hbox is then the sum of the widths of its parts, namely, 29 units.

Next, suppose that the hbox is required to be wider than 29 units,
say 35 units. This could happen, for example, if the hbox is required to

21 May 2013 10:27a.m.

TEX for the Impatient

glue 67

occupy an entire line and the line width is 35 units. Since the boxes can’t
change their width, TEX produces the necessary extra space by making
the glue items wider. The picture now looks like this:

box glue box glue box
size 6 size 10
stretch 4 stretch 8
shrink 2 shrink 6
width 4 width 8 width 5 width 14 width 4
width 35

The glue items don’t become wider equally; they became wider in pro-
portion to their stretch. Since the second glue item has twice as much
stretch as the first one, it gets wider by four units while the first glue item
gets wider by only two units. Glue can be stretched as far as necessary,
although TEX is somewhat reluctant to stretch it beyond the amount of
stretch given in its definition.

Finally, suppose that the hbox is required to be narrower than 29 units,
say 25 units. In this case TEX makes the glue items narrower. The picture
looks like this:

box glue box glue box
size 6 size 10
stretch 4 stretch 8
shrink 2 shrink 6
width 4| width 5 | width 5 width 7 width 4

width 25

The glue items become narrower in proportion to their shrink. The
first glue item becomes narrower by one unit, while the second glue item
becomes narrower by three units. Glue cannot shrink by a distance less
than the amount of shrink given in its definition even though the distance
it can stretch is unlimited. In this important sense the shrink and the
stretch behave differently.

A good rule of thumb for glue is to set the natural size to the amount
of space that looks best, the stretch to the largest amount of space that
TEX can add before the document starts to look bad, and the shrink to
the largest amount of space that TEX can take away before the document
starts to look bad. You may need to set the values by experiment.

You can produce glue that is infinitely stretchable by specifying its
stretch in units of ‘£i1’, ‘fil1l’, or ‘fil111’. Glue measured in ‘fi11’ is
infinitely more stretchable than glue measured in ‘fil’, and glue measured
in ‘£1111’ is infinitely more stretchable than glue measured in ‘£i11’. You
should rarely have any need for ‘£1111’ glue. Glue whose stretch is 2fil

N©O 87

21 May 2013 10:27 a.m.

TEX for the Impatient NO 88

68 Concepts \ §4

has twice as much stretch as glue whose stretch is 1£il, and similarly for
the other kinds of infinitely stretchable glue.

When TEX is apportioning extra space among glue items, the infinitely
stretchable ones, if there are any, get all of it. Infinitely stretchable glue is
particularly useful for setting text flush left, flush right, or centered:

» To set text flush left, put infinitely stretchable horizontal glue to
the right of it. That glue will consume all the extra space that’s
available on the line. You can use the \leftline command (p. 108)
or the \raggedright command (p. 116) to do this.

» To set text flush right, put infinitely stretchable horizontal glue to
the left of it. As before, that glue will consume all the extra space on
the line. You can use the \rightline command (p. 108) to do this.

» To set centered text, put identical infinitely stretchable horizontal
glue items on both sides of it. These two glue items will divide all
the extra space on the line equally between them. You can use the
\centerline command (p. 108) to do this.

You can also specify infinitely shrinkable glue in a similar way. Infinitely
shrinkable glue can act as negative space. Note that £il, etc., can be
used only to specify the stretch and shrink of glue—they can’t be used
to specify its natural size.

group. A group is a part of your manuscript that TEX treats as a unit.
You indicate a group by enclosing it in the braces ‘{’ and ‘}’ (or any other
characters with the appropriate category codes).

The most important property of a group is that any nonglobal definition
or assignment that you make inside a group disappears when the group
ends. For instance, if you write:

Please don’t pour {\it any} more tea into my hat.

the \it control sequence causes TEX to set the word ‘any’ in italic type
but does not affect the rest of the text. As another example, if you
use the \hsize parameter (p.114) to change the line length within a
group, the line length reverts to its previous value once TEX has gotten
past the group.

Groups are also useful as a way of controlling spacing. For instance,
if you write:

\TeX for the Impatient and the Outpatient too.
you'll get:
TEXfor the Impatient and the Outpatient too.

since the control sequence \TeX (which produces the TEX logo) absorbs
the following space. What you probably want is:

TEX for the Impatient and the Outpatient too.

21 May 2013 10:27a.m.

TEX for the Impatient NO 89

hbox 69

One way to get it is to enclose ‘\TeX’ in a group:
{\TeX} for the Impatient and the Outpatient too.

The right brace prevents the control sequence from absorbing the space.

hbox. An hboz (horizontal box) is a box that TEX constructs by placing
the items of a horizontal list one after another, left to right. An hbox,
taken as a unit, is neither inherently horizontal nor inherently vertical,
i.e., it can appear as an item of either a horizontal list or a vertical list.
You can construct an hbox with the \hbox command (p. 160).

header. A header is material that TEX puts at the top of every page,
above the text of that page. The header for a simple report might consist
of the title on the left side of the page and the text “Page n” on the right
side of the page. Ordinarily a header consists of a single line, which you
can set by assigning a token list to \headline (p. 143). The default plain
TEX header is blank. It’s possible to produce multiline headers too; see
page 274 for how to do it.

height. The height of a box is the distance that the box extends above
its baseline.

horizontal list. A horizontal list is a list of items that TEX has
produced while it is in one of its horizontal modes, i.e., assembling either
a paragraph or an hbox. See “horizontal mode” below.

horizontal mode. When TEX is assembling a paragraph or an hbox,
it is in one of two horizontal modes: ordinary horizontal mode for assem-
bling paragraphs and restricted horizontal mode for assembling hboxes.
Whenever TEX is in a horizontal mode its stomach (see “anatomy of TEX”,
p.46) is constructing a horizontal list of items (boxes, glue, penalties,
etc.). TEX typesets the items in the list one after another, left to right.

A horizontal list can’t contain any items produced by inherently vertical
commands, e.g., \vskip.

« If TEX is assembling a horizontal list in ordinary horizontal mode and
encounters an inherently vertical command, TEX ends the paragraph
and enters vertical mode.

« If TEX is assembling a horizontal list in restricted horizontal mode
and encounters an inherently vertical command, it complains.

Two commands that you might at first think are inherently horizontal
are in fact inherently vertical: \halign (p.178) and \hrule (p.172). See
page 286 of The TEXbook for a list of the inherently vertical commands.

You should be aware of a subtle but important property of restricted
horizontal mode: you can’t enter restricted horizontal mode when you’re in

21 May 2013 10:27 a.m.

TEX for the Impatient NO© 90

70 Concepts \ §4

ordinary horizontal mode. What this means in practice is that when TEX is
assembling an hbox it won’t handle paragraph-like text, i.e., text for which
it does line breaking. You can get around this restriction by enclosing the
paragraph-like text in a vbox within the hbox. The same method works if
you want to put, say, a horizontal alignment inside an hbox.

hyphenation. TEX automatically hyphenates words as it is processing
your document. TEX is not eager to insert hyphens, preferring instead to
find good line breaks by adjusting the spacing between words and moving
words from one line to another. TEX is clever enough to understand
hyphens that are already in words.

You can control TEX’s hyphenation in several ways:

» You can tell TEX to allow a hyphen in a particular place by inserting
a discretionary hyphen with the \- command (p. 126).
» You can tell TEX how to hyphenate particular words throughout your
document with the \hyphenation command (p. 127).
» You can enclose a word in an hbox, thus preventing TEX from hy-
phenating it.
* You can set the value of penalties such as \hyphenpenalty (p. 125).
If a word contains an explicit or discretionary hyphen, TEX will never
break it elsewhere.

input stream. See “file” (p.62).

insertion. An insertion is a vertical list containing material to be in-
serted into a page when TRX has finished building that page.'® Examples
of such insertions are footnotes and figures. The plain TEX commands
for creating insertions are \footnote, \topinsert, \midinsert, and
\pageinsert, as well as the primitive \insert command itself (pp. 145
148). TEX’s mechanism for handling insertions is rather complicated; see
pages 122-125 of The TEXbook for the details.

interline glue. Interline glue is the glue that TEX inserts in front of
every box in a vertical list except for the first one. The interline glue is or-
dinarily specified so as to maintain a constant distance between the base-
lines of the boxes. Its value is jointly determined by the \baselineskip,
\lineskip, and \lineskiplimit parameters (p. 133).

10 TEX itself doesn’t insert the material—it just makes the material available to the
output routine, which is then responsible for transferring it to the composed page. The
only immediate effect of the \insert command (p.147) is to change TEX’s page break
calculations so that it will leave room on the page for the inserted material. Later,
when TEX actually breaks the page, it divides the inserted material into two groups:
the material that fits on the current page and the material that doesn’t. The material
that fits on the page is placed into box registers, one per insertion, and the material that
doesn’t fit is carried over to the next page. This procedure allows TEX to do such things
as distributing parts of a long footnote over several consecutive pages.

21 May 2013 10:27a.m.

TEX for the Impatient NO© 91

item 71

item. The term item is often used to refer to a component of a horizon-
tal, vertical, or math list, i.e., a list of items that TEX is building while it
is in a horizontal, vertical, or math mode.

justified text. Justified text is text that has been typeset so that
both margins are even. Unjustified text, on the other hand, has been
typeset with “ragged” margins on one or both sides. Documents typed
on old-fashioned typewriters almost always have ragged right margins.
Although documents produced by TEX are justified by default, you can
if you wish produce documents (or sequences of lines) that have ragged
right—or ragged left—margins. You can also get TEX to center a se-
quence of lines, thus making both margins ragged. You can use the
\leftskip, \rightskip, and \raggedright commands (pp.115, 116)
for these purposes.

When TgX is producing justified text, it usually needs to stretch or
shrink the glue within each line to make the margins come out even.
When TgX is producing unjustified text, on the other hand, it usually
leaves the glue within each line at its natural width. Many typographers
prefer unjustified text because its interword spacing is more uniform.

kern. A kern indicates a change to the normal spacing between the
items of a vertical or horizontal list. A kern can be either positive or
negative. By putting a positive kern between two items, you push them
further apart by the amount of the kern. By putting a negative kern
between two items, you bring them closer together by the amount of the
kern. For instance, this text:

11\quad 1\kernlpt 1\quad 1\kern-.75pt 1
produces letter pairs that look like this:
1 11 11

You can use kerns in vertical mode to adjust the space between partic-
ular pairs of lines.

A kern of size d is very similar to a glue item that has size d and no
stretch or shrink. Both the kern and the glue insert or remove space be-
tween neighboring items. The essential difference is that TEX considers
two boxes with only kerns between them to be tied together. That is,
TEX won’t break a line or a page at a kern unless the kern is immedi-
ately followed by glue. Bear this difference in mind when you’re deciding
whether to use a kern or a glue item for a particular purpose.

TEX automatically inserts kerns between particular pairs of adjacent
letters, thus adjusting the space between those letters and enhancing
the appearance of your typeset document. For instance, the Computer
Modern 10-point roman font contains a kern for the pair ‘To’ that brings
the left edge of the ‘0’ under the ‘I’. Without the kern, you’d get “Top”

21 May 2013 10:27 a.m.

TEX for the Impatient N© 92

72 Concepts \ §4

rather than “Top”’—the difference is slight but noticeable. The metrics
file (.tfm file) for each font specifies the placement and size of the kerns
that TEX automatically inserts when it is setting text in that font.

leaders. You can use leaders to fill a space with copies of a pattern,
e.g., to put repeated dots between a title and a page number in a table
of contents. A leader is a single copy of the pattern. The specification of
leaders contains three pieces of information:

1) what a single leader is
2) how much space needs to be filled
3) how the copies of the pattern should be arranged within the space

TEX has three commands for specifying leaders: \leaders, \cleaders,
and \xleaders (p.174). The argument of each command specifies the
leader. The command must be followed by glue; the size of the glue specifies
how much space is to be filled. The choice of command determines how
the leaders are arranged within the space.

Here’s an example showing how \leaders works:

\def\dotting{\leaders\hbox to lem{\hfil.\hfil}\hfil}
\line{The Political Process\dotting 18}
\line{Bail Bonds\dotting 26}

Here we’ve put the leaders and their associated glue into a macro def-
inition so that we can conveniently use them in two places. This in-
put produces:
The Political Process 18
BailBonds 26

The hbox following \leaders specifies the leader, namely, an hbox 1 em
wide containing a dot at its center. The space is filled with copies of this
box, effectively filling it with dots whose centers are 1 em apart. The fol-
lowing \hfil (the one at the end of the macro definition) is glue that spec-
ifies the space to be filled. In this case it’s whatever space is needed to fill
out the line. By choosing \leaders rather than \cleaders or \xleaders
we’ve insured that the dots on different lines line up with each other.

In general, the space to be filled acts as a window on the repeated
copies of the leader. TEX inserts as many copies as possible, but some
space is usually left over—either because of where the leaders fall within
the window or because the width of the window isn’t an exact multiple of
the width of the leader. The difference among the three commands is in
how they arrange the leaders within the window and how they distribute
any leftover space:

» For \leaders, TEX first produces a row of copies of the leader. It
then aligns the start of this row with the left end of the innermost
box B that is to contain the result of the \leaders command. In
the two-line example above, B is a box produced by \line. Those

21 May 2013 10:27a.m.

TEX for the Impatient NO© 93

ligature 73

leaders that fit entirely in the window are placed into B, and the
leftover space at the left and right ends is left empty. The picture
is like this:

The Political Process window 18
i3
The Political Process 18

This procedure ensures that in the two-line example on the previous
page, the dots in the two lines are vertically aligned (since the reference
points of the hboxes produced by \1ine are vertically aligned).

» For \cleaders, TEX centers the leaders within the window by di-
viding the leftover space between the two ends of the window. The
leftover space is always less than the width of a single leader.

= For \xleaders, TEX distributes the leftover space evenly within the
window. In other words, if the leftover space is w and the leader
is repeated n times, TEX puts space of width w/(n + 1) between
adjacent leaders and at the two ends of the leaders. The effect is
usually to spread out the leaders a little bit. The leftover space for
\xleaders, like that for \cleaders, is always less than the width of
a single leader.

So far we’ve assumed that the leaders consist of hboxes arranged hori-
zontally. T'wo variations are possible:

1) You can use a rule instead of an hbox for the leader. TEX makes the
rule as wide as necessary to extend across the glue (and the three
commands are equivalent).

2) You can produce vertical leaders that run down the page by including
them in a vertical list rather than a horizontal list. In this case you
need vertical glue following the leaders.

See pages 223-225 of The TgXbook for the precise rules that TEX uses in
typesetting leaders.

ligature. A ligature is a single character that replaces a particular
sequence of adjacent characters in a typeset document. For example,
the word ‘office’ is typeset as “office”, not “office”, by high-quality
typesetting systems. Knowledge of ligatures is built into the fonts that
you use, so there’s nothing explicit you need do in order to get TEX
to produce them. (You could defeat the ligature in “office”, as we did
just above, by writing ‘of{f}ice’ in your input.) TEX is also capable of
using its ligature mechanism to typeset the first or last letter of a word
differently than the same letter as it would appear in the middle of a

21 May 2013 10:27 a.m.

TEX for the Impatient NO 94

74 Concepts \ §4

word. You can defeat this effect (if you ever encounter it) by using the
\noboundary command (p.101).

Sometimes you may need a ligature from a European language. TEX
won’t produce these automatically unless you're using a font designed
for that language. A number of these ligatures, e.g., ‘A’ are available as
commands (see “Letters and ligatures for European alphabets”, p. 97).

line break. A line break is a place in your document where TEX ends
a line as it typesets a paragraph. When TEX processes your document,
it collects the contents of each paragraph in a horizontal list. When it
has collected an entire paragraph, it analyzes the list to find what it
considers to be the best possible line breaks. TEX associates “demerits”
with various symptoms of unattractive line breaks—lines that have too
much or too little space between words, consecutive lines that end in
hyphens, and so forth. It then chooses the line breaks so as to minimize
the total number of demerits. See pages 96-101 of The TEXbook for a
full description of TEX’s line-breaking rules.
You can control TEX’s choice of line breaks in several ways:

= You can insert a penalty (p. 121) somewhere in the horizontal list that
TEX builds as it forms a paragraph. A positive penalty discourages
TEX from breaking the line there, while a negative penalty—a bonus,
in other words—encourages TEX to break the line there. A penalty
of 10000 or more prevents a line break, while a penalty of —10000 or
less forces a line break. You can get the same effects with the \break
and \nobreak commands (pp. 120, 121).

You can tell TEX to allow a hyphen in a particular place by insert-
ing a discretionary hyphen with the \- command (p.126), or oth-
erwise control how TEX hyphenates your document (see “hyphen-
ation”, p. 70).

You can tell TEX to allow a line break after a solidus (/) between
two words by inserting \slash (p.122) between them, e.g., ‘fur-
longs\slash fortnight’.

You can tell TEX not to break a line between two particular words
by inserting a tie (*) between those words.

» You can adjust the penalties associated with line breaking by assign-
ing different values to TEX’s line-breaking parameters.

» You can enclose a word or sequence of words in an hbox, thus pre-
venting TEX from breaking the line anywhere within the hbox.

It’s useful to know the places where TEX can break a line:
» at glue, provided that:

1) the item preceding the glue is one of the following: a box, a
discretionary item (e.g., a discretionary hyphen), the end of a

21 May 2013 10:27a.m.

TEX for the Impatient N© 95

list 75

math formula, a whatsit, or vertical material produced by \mark
or \vadjust or \insert
2) the glue is not part of a math formula

When TEX breaks a line at glue, it makes the break at the left edge
of the glue space and forgets about the rest of the glue.

= at a kern that’s immediately followed by glue, provided that this kern
isn’t within a math formula

= at the end of a math formula that’s immediately followed by glue

= at a penalty, even one within a math formula

= at a discretionary break

When TgEX breaks a line, it discards any sequence of glue, kerns, and
penalty items that follows the break point. If such a sequence is followed
by the beginning of a math formula, it also discards any kern produced
by the beginning of the formula.

list. A list is a sequence of items (boxes, glue, kerns, etc.) that com-
prise the contents of an hbox, a vbox, or a math formula. See “horizontal
list” (p.69), “vertical list” (p.94).

log file. See “file” (p.62).

macro. A macro is a definition that gives a name to a pattern of TEX
input text.!’ The name can be either a control sequence or an active
character. The pattern is called the “replacement text”. The primary
command for defining macros is the \def control sequence.

As a simple example, suppose that you have a document in which the
sequence ‘cos 44 sin §’ occurs many times. Instead of writing it out each
time, you can define a macro for it:

\def\arctheta{\cos \theta + i \sin \theta}

Now whenever you need this sequence, you can just “call” the macro by
writing ‘\arctheta’ and you’ll get it. For example, ‘$e~{\arcthetal}$’
will give you ‘gcos0+isin®

But the real power of macros lies in the fact that a macro can have
parameters. When you call a macro that has parameters, you provide
arguments that are substituted for those parameters. For example, sup-
pose you write:

\def\arc#1{\cos #1 + i \sin #1}

The notation #1 indicates the first parameter of the macro, which in
this case has only one parameter. You now can produce a similar form,
such as ‘cos 2t+i sin 2¢’, with the macro call ‘\arc {2t}’.

H More precisely, the definition gives a name to a sequence of tokens.

21 May 2013 10:27 a.m.

TEX for the Impatient NO© 96

76 Concepts \ §4

More generally, a macro can have up to nine parameters, which you in-
dicate as ‘#1’°, ‘#2’, etc. in the macro definition. TEX provides two kinds of
parameters: delimited parameters and undelimited parameters. Briefly,
a delimited parameter has an argument that’s delimited, or ended, by a
specified sequence of tokens (the delimiter), while an undelimited parame-
ter has an argument that doesn’t need a delimiter to end it. First we’ll ex-
plain how macros work when they have only undelimited parameters, and
then we’ll explain how they work when they have delimited parameters.

If a macro has only undelimited parameters, those parameters must ap-
pear one after another in the macro definition with nothing between them
or between the last parameter and the left brace in front of the replacement
text. A call on such a macro consists of the macro name followed by the
arguments of the call, one for each parameter. Each argument is either:

» a single token other than a left or right brace, or
= a sequence of tokens enclosed between a left brace and a matching
right brace.!?

When TEX encounters a macro, it expands the macro in its gullet (see
“anatomy of TEX”, p.46) by substituting each argument for the corre-
sponding parameter in the replacement text. The resulting text may con-
tain other macro calls. When TEX encounters such an embedded macro
call, it expands that call immediately without looking at what follows the
call.’® When TEX’s gullet gets to a primitive command that cannot be
further expanded, TEX passes that command to TEX’s stomach. The or-
der of expansion is sometimes critical, so in order to help you understand
it we’ll give you an example of TEX at work.

Suppose you provide TEX with the following input:

\def\a#1#2{\b#2#1\kern 2pt #1}
\def\b{bb}

\def\c{\char49 cc}

\def\d{dd}

\a\c{e\d} % Call on \a.

Then the argument corresponding to #1 is \c, and the argument corre-
sponding to #2 is e\d. TEX expands the macro call in the following steps:

\b e\d\c\kern 2pt \c

bbe\d\c\kern 2pt \c

\d\c\kern 2pt \c (‘b’, ‘D’ ‘e’ sent to stomach)
dd\c\kern 2pt \c

\c\kern 2pt \c (‘d’, ‘d’ sent to stomach)

12 The argument can have nested pairs of braces within it, and each of these pairs can
indicate either a group or a further macro argument.

131n computer science terminology, the expansion is “depth first” rather than “breadth
first”. Note that you can modify the order of expansion with commands such as
\expandafter.

21 May 2013 10:27a.m.

TEX for the Impatient

macro ié

\char49 cc\kern 2pt \c

\c (‘\char’, ‘4’ ‘9’ ‘c’, ‘c’, ‘\kern’, ‘2, ‘p’, ‘t’ sent to stomach)
\char49 cc

(‘\char49’, ‘c’, ‘¢’ sent to stomach)

Note that the letters ‘b’, ‘c’, ‘d’, and ‘e’ and the control sequences ‘\kern’
and ‘\char’ are all primitive commands that cannot be expanded further.

A macro can also have “delimited parameters”, which can be mixed
with the undelimited ones in any combination. The idea of a delimited
parameter is that TEX finds the corresponding argument by looking for
a certain sequence of tokens that marks the end of the argument—the
delimiter. That is, when TEX is looking for such an argument, it takes
the argument to be all the tokens from TEX’s current position up to but
not including the delimiter.

You indicate a delimited parameter by writing ‘#n’ (n must be between
0 and 9) followed by one or more tokens that act as the delimiter. The
delimiter extends up to the next ‘#” or ‘{’—which makes sense since ‘#’
starts another parameter and ‘{’ starts the replacement text.

The delimiter can’t be ‘#’ or ‘{’, so you can tell a delimited parameter
from an undelimited one by looking at what comes after it.

If the character after the parameter is ‘#’ or ‘{’, you’ve got an undelim-
ited parameter; otherwise you've got a delimited one. Note the difference
in arguments for the two kinds of parameters—an undelimited parameter
is matched either by a single token or by a sequence of tokens enclosed
in braces, while a delimited parameter is matched by any number of to-
kens, even zero.

An example of a macro that uses two delimited parameters is:

\def\diet#1 #2.{0n #1 we eat #2!}

Here the first parameter is delimited by a single space and the second
parameter is delimited by a period. If you write:

\diet Tuesday turnips.

you’ll get the text “On Tuesday we eat turnips!”. But if the delimiting
tokens are enclosed in a group, TEX doesn’t consider them as delimiting.
So if you write:

\diet {Sunday mornings} pancakes.

you’ll get the text ‘On Sunday mornings we eat pancakes!” even though
there’s a space between ‘Sunday’ and ‘morning’. When you use a space as
a delimiter, an end-of-line character ordinarily also delimits the argument
since TEX converts the end-of-line to a space before the macro mechanism
ever sees it.

Once in a while you might need to define a macro that has ‘#’ as a
meaningful character within it. You’re most likely to need to do this
when you’re defining a macro that in turn defines a second macro. What

N©o 97

21 May 2013 10:27 a.m.

TEX for the Impatient NO 98

78 Concepts \ §4

then do you do about the parameters of the second macro to avoid getting
TEX confused? The answer is that you write two ‘#’s for every one that
you want when the first macro is expanded. For example, suppose you
write the macro definition:

\def\first#1{\def\second##1{#1/##1}}
Then the call ‘\first{0One}’ defines ‘\second’ as:
\def\second#1{0ne/#1}

and the subsequent call ‘\second{Two}’ produces the text ‘One/Two’.

A number of commands provide additional ways of defining macros (see
pp. 230-241). For the complete rules pertaining to macros, see Chapter 20
of The TEXbook.

magnification. When TEX typesets your document, it multiplies all
dimensions by a magnification factor f/1000, where f is the value of the
\mag parameter (p.223). Since the default value of \mag is 1000, the
normal case is that your document is typeset just as specified. Increasing
the magnification is often useful when you’re typesetting a document that
will later be photoreduced.

You can also apply magnification to a single font so as to get a smaller
or larger version of that font than its “design size”. You need to provide
the device driver with a shape file (see “font”, p. 64) for each magnification
of a font that you’re using—unless the fonts are built into your printer
and your device driver knows about them. When you’re defining a font
with the \font command (p.221), you can specify a magnification with
the word ‘scaled’. For example:

\font\largerbold = cmbx10 scaled 2000

defines ‘\largerbold’ as a font that is twice as big as cmbx10 (Computer
Modern Bold Extended 10-point) and has the character shapes uniformly
enlarged by a factor of 2.

Many computer centers find it convenient to provide fonts scaled by a
ratio of 1.2, corresponding to magnification values of 1200, 1440, etc. TEX
has special names for these values: ‘\magstep1’ for 1200, ‘\magstep2’ for
1440, and so forth up to ‘\magstep5’. The special value ‘\magstephalf’
corresponds to magnification by v/1.2, which is visually halfway between
“\magstep0’ (no magnification) and ‘\magstep1’. For example:

\font\bigbold = cmbx10 scaled \magstephalf

You can specify a dimension as it will be measured in the final document
independent of magnification by putting ‘true’ in front of the unit. For
instance, ‘\kern 8 true pt’ produces a kern of 8 points whatever the
magnification.

21 May 2013 10:27a.m.

TEX for the Impatient NO© 99

margins 79

margins. The margins of a page define a rectangle that normally con-
tains the printed matter on the page. You can get TEX to print material
outside of this rectangle, but only by taking some explicit action that
moves the material there. TEX considers headers and footers to lie out-
side the margins.

The rectangle is defined in terms of its upper-left corner, its width,
and its depth. The location of the upper-left corner is defined by the
\hoffset and \voffset parameters (p.140). The default is to place that
corner one inch from the top and one inch from the left side of the page,
corresponding to a value of zero for both \hoffset and \voffset.!* The
width of the rectangle is given by \hsize and the depth by \vsize.

The implications of these conventions are:

» The left margin is given by \hoffset+1in.

» The right margin is given by the width of the paper minus \hoffset
+ 1in + \hsize.

= The top margin is given by \voffset+1in.

= The bottom margin is given by the length of the paper minus \voff-
set + 1lin + \vsize.

From this information you can see what parameters you need to change
in order to change the margins.

Any changes that you make to \hoffset, \voffset, or \vsize become
effective the next time TEX starts a page. In other words, if you change
them within a page, the change will affect only the following pages. If you
change \hsize, the change will become effective immediately.

mark. A mark is an item that you can insert into a horizontal, ver-
tical, or math list and later recover from within your output routine.
Marks are useful for purposes such as keeping track of topics to appear
in page headers. Each mark has a list of tokens—the “mark text’—
associated with it. The \mark command (p.144) expects such a token
list as its argument, and appends an item containing that token list (af-
ter expansion) to whatever list TEX is currently building. The \topmark,
\firstmark, and \botmark commands (p.144) can be used to retrieve
various marks on a page. These commands are most often used in page
headers and footers.

Here is a simplified example. Suppose you define a section heading
macro as follows:

\def\section#1{\medskip{\bf#1}\smallskip\mark{#1}}
% #1 is the name of the section

14 This seems to us to be an odd convention. It would have been more natural to have
the (0,0) point for \hoffset and \voffset be at the upper-left corner of the paper
and to have set their default values to one inch.

21 May 2013 10:27 a.m.

TEX for the Impatient NO© 100

80 Concepts \ §4

This macro, when called, will produce a section heading in boldface and
will also record the name of the section as a mark. You can now define
the header for each printed page as follows:

\headline = {\ifodd\pageno \hfil\botmark\quad\folio
\else \folio\quad\firstmark\hfil \fi}

Each even (left-hand) page will now have the page number followed by the
name of the first section on that page, while each odd (right-hand) page
will have the page number followed by the name of the last section on
that page. Special cases, e.g., no sections starting on a page, will generally
come out correctly because of how \firstmark and \botmark work.

When you split a page using the \vsplit command (p.149) you can
retrieve the mark texts of the first and last marks of the split-off portion
with the \splitfirstmark and \splitbotmark commands (p. 144).

See pages 258260 of The TEXbook for a more precise explanation of
how to create and retrieve marks.

math mode. A math mode is a mode that TEX is in when it is building
a math formula. TEX has two different math modes: text math mode for
building a formula to be embedded within a line of text, and display math
mode for building a formula to appear on a line by itself. You indicate
text math mode by enclosing the formula in $’s, and display math mode by
enclosing the formula in $$’s. An important property of both math modes
is that input spaces don’t count. See pages 290-293 of The TEXbook for
details on how TEX responds to different commands in math mode.

mathcode. A mathcode is a number that TEX uses to identify and de-
scribe a math character, i.e., a character that has a particular role in a
math formula. A mathcode conveys three pieces of information about
a character: its font position, its family, and its class. Each of the 256
possible input characters has a mathcode, which is defined by the TEX
program but can be changed.

TEX has sixteen families of fonts, numbered 0-15. Each family contains
three fonts: one for text size, one for script size, and one for scriptscript
size. TEX chooses the size of a particular character, and therefore its font,
according to the context. The class of a character specifies its role in a
formula (see page 154 of The TgXbook). For example, the equals sign
‘=" is in class 3 (Relation). TEX uses its knowledge of character classes
when it is deciding how much space to put between different components
of a math formula.

The best way to understand what mathcodes are all about is to see
how TEX uses them. So we’ll show you what TEX does with a character
token t of category code 11 or 12 in a math formula:

1) It looks up the character’s mathcode.
2) It determines a family f from the mathcode.

21 May 2013 10:27a.m.

TEX for the Impatient NO© 101

mathematical unit 81

) It determines the size s from the context.
) It selects a font F' by picking the font for size s in family f.
5) It determines a character number n from the mathcode.
) It selects as the character ¢ to be typeset the character at position
n of font F.
7) It adjusts the spacing around ¢ according to the class of ¢ and the
surrounding context.
8) It typesets the character c.

The context dependence in items (3) and (7) implies that TEX cannot
typeset a math character until it has seen the entire formula containing
the math character. For example, in the formula ‘$a\over b$’, TEX
doesn’t know what size the ‘a’ should be until it has seen the \over.

The mathcode of a character is encoded according to the formula 4096¢+
256 f + n, where c is the class of the character, f is its family, and n
is its ASCII character code within the family. You can change TEX’s
interpretation of an input character in math mode by assigning a value
to the \mathcode table entry (p.251) for that character. The character
must have a category code of 11 (letter) or 12 (other) for TEX to look
at its \mathcode.

You can define a mathematical character to have a “variable” family
by giving it a class of 7. Whenever TEX encounters that character in a
math formula, it takes the family of the character to be the current value
of the \fam parameter (p.210). A variable family enables you to specify
the font of ordinary text in a math formula. For instance, if the roman
characters are in family 0, the assignment \fam = 0 will cause ordinary
text in a math formula to be set in roman type rather than in something
else like math italic type. If the value of \fam is not in the range from 0 to
15, TEX takes the value to be 0, thus making classes 0 and 7 equivalent.
TEX sets \fam to —1 whenever it enters math mode.

mathematical unit. A mathematical unit, denoted by ‘mu’, is a unit
of distance that is used to specify glue in math formulas. See “muglue”
(p.82).

mode. When TEX is processing your input in its stomach (see “anatomy
of TEX”, p.46), it is in one of six modes:

= ordinary horizontal mode (assembling a paragraph)

= restricted horizontal mode (assembling an hbox)

= ordinary vertical mode (assembling a page)

= internal vertical mode (assembling a vbox)

= text math mode (assembling a formula that appears in text)

= display math mode (assembling a formula that appears on a line
by itself)

The mode describes the kind of entity that TEX is putting together.

21 May 2013 10:27 a.m.

TEX for the Impatient NO© 102

82 Concepts \ §4

Because you can embed one kind of entity within another, e.g., a vbox
within a math formula, TEX keeps track not just of one mode but of a
whole list of modes (what computer scientists call a “stack”). Suppose
that TEX is in mode M and encounters something that puts it into a new
mode M’ When it finishes its work in mode M! it resumes what it was
doing in mode M.

muglue. Muglue is a kind of glue that you can use only in math formulas.
It is measured in mu (mathematical units). One mu is equal to 1/18 em,
where the size of an em is taken from family 2 of the math fonts. TEX
automatically adjusts the size of muglue according to the context. For
instance, a glue size of 2mu is normally smaller within a subscript than it
is within ordinary text. You must use the \mskip command to produce
muglue. For example, ‘\mskip 4mu plus 5mu’ produces mathematical
glue with natural space of four mu and stretch of five mu.

number. In TgEX, a number is a positive or negative integer. You can
write a number in TEX in four different ways:

1) as an ordinary decimal integer, e.g., 52

2) as an octal number, e.g., >14

3) as a hexadecimal number, e.g., "FFO

4) as the code for an ASCII character, e.g., ‘) or ‘\)

Any of these forms can be preceded by ‘+’ or ‘-,

An octal number can have only the digits 0-7. A hexadecimal number
can have digits 0-9 and A-F, representing values from 0 to 15. You can’t,
alas, use lowercase letters when you write a hexadecimal number. If you
need an explanation of octal and hexadecimal numbers, you’ll find one
on pages 43—44 of The TEXbook.

A decimal, octal, or hexadecimal number ends at the first character
that can’t be part of the number. Thus a decimal number ends when
TEX sees, say, a letter, even though a letter between ‘A’ and ‘F’ would
not end a hexadecimal number. You can end a number with one or more
spaces and TEX will ordinarily ignore them.!®

The fourth form above specifies a number as the ASCII code for a
character. TEX ignores spaces after this form of number also. You can
write a number in this form either as ‘c or as ‘\c. The second form,
though longer, has the advantage that you can use it with any character,
even ‘\’, ‘%, or ‘""M. It does have one rather technical disadvantage:
when TEX is expanding a token sequence for a command such as \edef
or \write, occurrences of ‘\¢’ within numbers will also be expanded if
they can be. That’s rarely the effect you want.

15 When you’re defining a macro that ends in a number, you should always put a space
after that number; otherwise TEX may later combine that number with something else.

21 May 2013 10:27a.m.

TEX for the Impatient NO©O 103

ordinary mode 83

The following are all valid representations of the decimal number 78:
78 +078 "4E ’116 ‘N ‘AN

You can’t use a number in text by itself since a number isn’t a com-
mand. However, you can insert the decimal form of a number in text by
putting a \number command (p.224) in front of it or the roman numeral
form by putting a \romannumeral command in front of it.

You can also use decimal constants, i.e., numbers with a fractional part,
for specifying dimensions (see “dimension”, p.60). A decimal constant
has a decimal point, which can be the first character of the constant. You
can use a comma instead of a period to represent the decimal point. A
decimal constant can be preceded by a plus or minus sign. Thus ‘.5in’,
‘-3.22pt’, and ‘+1,5\baselineskip’ are valid dimensions. You can't,
however, use decimal constants in any context other than as the “factor”
part of a dimension, i.e., its multiplier.

ordinary mode. An ordinary mode is a mode that TEX is in when it
is assembling a paragraph into lines or assembling lines into a page. See
“horizontal mode” (p.69), “vertical mode” (p.94).

outer. An outer macro is one that you can’t use in certain contexts
where TEX is processing tokens at high speed. The purpose of making
a command outer is to enable TEX to catch errors before it’s gone too
far. When you define a macro, you can make it outer with the \outer
command (p.232).

You cannot use an outer macro in any of the following contexts:

» within an argument to a macro

= in the parameter text or replacement text of a definition
= in the preamble to an alignment

= in the unexecuted part of a conditional test

An outer context is a context in which you can use an outer macro, i.e.,
it’s any context other than the ones just listed.

For example, the following input would be a forbidden use of an outer
macro:

\leftline{\proclaim Assertion 2. That which is not inner
is outer.}

The \proclaim macro (p.131) is defined in plain TEX to be outer, but
it’s being used here in a macro argument to \leftline.

output routine. When TEX has accumulated at least enough material
to fill up a page, it chooses a breakpoint and places the material before
the breakpoint in \box255. It then calls the current output routine, which
processes the material and eventually sends it to the .dvi file. The out-
put routine can perform further processing, such as inserting headers,

21 May 2013 10:27 a.m.

TEX for the Impatient N© 104

84 Concepts \ §4

footers, and footnotes. Plain TEX provides a default output routine that
inserts a centered page number at the bottom of each page. By providing
a different output routine you can achieve such effects as double-column
output. You can think of the output routine as having a single responsi-
bility: disposing of the material in \box255 one way or another.

The current output routine is defined by the value of \output (p. 148),
which is a list of tokens. When TEX is ready to produce a page, it just
expands the token list.

You can make some simple changes to the actions of the plain TEX
output routine without actually modifying it. For example, by assigning
a list of tokens to \headline or \footline (p.143) you can have TEX
produce a different header or footer than it ordinarily would.

The output routine is also responsible for collecting any insertions; com-
bining those insertions and any “decorations” such as headers and footers
with the main contents of the page and packaging all of this material in a
box; and eventually sending that box to the .dvi file with the \shipout
command (p.148). Although this is what an output routine most often
does, a special-purpose output routine might behave differently.

output stream. See “file” (p.62).

page. TEX processes a document by assembling pages one at a time
and passing them to the output routine. As it proceeds through your
document, TEX maintains a list of lines and other items to be placed on
the page. (The lines are actually hboxes.) This list is called the “main
vertical list”. Periodically TEX goes through a process called “exercising
the page builder”. The items added to the main vertical list between
exercises of the page builder are called “recent contributions”.

The page builder first examines the main vertical list to see if it’s
necessary to ship out a page yet, either because the items on the main
vertical list won’t all fit on the page or because of an explicit item, such
as \eject (p.137), that tells TEX to end the page. If it’s not necessary to
ship out a page, then the page builder is done for the time being.

Otherwise the page builder analyzes the main vertical list to find what
it considers to be the best possible page break. It associates penalties
with various kinds of unattractive page breaks—a break that would leave
an isolated line at the top or bottom of a page, a break just before a
math display, and so forth. It then chooses the least costly page break,
where the cost of a break is increased by any penalty associated with that
break and by the badness of the page that would result (see page 111 of
The TgXbook for the cost formula). If it finds several equally costly page
breaks, it chooses the last one.

Once the page builder has chosen a page break, it places the items on
the list that are before that break into \box255 and leaves the remaining
ones for the next page. It then calls the output routine. \box255 acts as

21 May 2013 10:27a.m.

TEX for the Impatient NO© 105

page break 85

a mailbox, with the page builder as the sender and the output routine as
the receiver. Ordinarily the output routine processes \box255, adds other
items, such as insertions, headers, and footers, to the page, and ships out
the page to the .dvi file with a \shipout command. (Specialized output
routines may behave differently.) From TEX’s standpoint, it doesn’t matter
whether or not the output routine ships out a page; the only responsibility
of the output routine is to process \box255 one way or another.

It’s important to realize that the best place to break a page isn’t nec-
essarily the last possible place to break the page. Penalties and other
considerations may cause the page break to come earlier. Furthermore,
TEX appends items to the main vertical list in batches, not just singly.
The lines of a paragraph are an example of such a batch. For these reasons
the page builder usually has items left over when it breaks a page. These
leftover items then form the beginning of the main vertical list for the
next page (possibly in the middle of a batch). Because items are carried
over from one page to another, you can’t assume that as TEX is processing
input, the current page number accurately reflects the page on which the
corresponding output will appear. See pages 110-114 of The TEXbook for
a full description of TEX’s page-breaking rules.

page break. A page break is a place in your document where TEX
ends a page and (except at the end of the document) starts a new one.
See “page” (p.84) for the process that TEX goes through in choosing
a page break.

You can control TEX’s choice of page breaks in several ways:

= You can insert a penalty (p.136) between two items in the main
vertical list. A positive penalty discourages TEX from breaking the
page there, while a negative penalty—a bonus, in other words—
encourages TEX to break the page there. A penalty of 10000 or more
prevents a page break, while a penalty of —10000 or less forces a page
break. You can get the same effects with the \break and \nobreak
commands (p. 136).

» You can adjust the penalties associated with page breaking by as-
signing different values to TEX’s page-breaking parameters.

= You can enclose a sequence of paragraphs or other items in the main
vertical list within a vbox, thus preventing TEX from breaking the
page anywhere within the sequence.

Once TEX has chosen a page break, it places the portion of the main
vertical list that precedes the break into \box255. It then calls the current
output routine to process \box255 and eventually ships its contents to
the .dvi file. The output routine must also handle insertions, such as
footnotes, that TEX has accumulated while processing the page.

It’s useful to know the places where TEX can break a page:

21 May 2013 10:27 a.m.

TEX for the Impatient NO© 106

86 Concepts \ §4

» At glue, provided that the item preceding the glue is a box, a whatsit,
a mark, or an insertion. When TEX breaks a page at glue, it makes
the break at the top of the glue space and forgets about the rest
of the glue.

» At a kern that’s immediately followed by glue.

» At a penalty, possibly between the lines of a paragraph.

When TEX breaks a page, it discards any sequence of glue, kerns, and
penalty items that follows the break point.

page builder. See “page” (p.84).

page layout. When you're designing a document, you need to decide
on its page layout: the page size, the margins on all four sides, the headers
and footers, if any, that appear at the top and bottom of the page, and
the amount of space between the body of the text and the headers or
footers. TEX has defaults for all of these. It assumes an 81/»-by-11-inch
page with margins of approximately one inch on all four sides, no header,
and a footer consisting of a centered page number.

The margins are determined jointly by the four parameters \hoffset,
\voffset, \hsize, and \vsize (see “margins”, page 79, for advice on
how to adjust them). The header normally consists of a single line that
appears at the top of each page, within the top margin area. You can set it
by assigning a token list to the \headline parameter (p.143). Similarly,
the footer normally consists of a single line that appears at the bottom of
each page, within the bottom margin area. You can set it by assigning a
token list to the \footline parameter (p. 143). For example, the input:

\headline = {Baby’s First Document\dotfill Page\folio}
\footline = {\hfil}

produces a header line like this on each page:

Baby’s First Document........... oo Page 19

and no footer line.
You can use marks to place the current topic of a section of text into the
header or footer. See “mark” (p. 79) for an explanation of how to do this.

paragraph. Intuitively, a paragraph is a sequence of input lines that’s
ended by a blank line, by a \par command (p. 110), or by an intrinsically
vertical command, such as \vskip. More precisely, a paragraph is a
sequence of commands that TEX processes in ordinary horizontal mode.
When TEX has collected an entire paragraph, it forms it into a sequence
of lines by choosing line breaks (see “line break”, p.74). The result is
a list of hboxes with glue, interline penalties, and interspersed vertical
material between them. Each hbox is a single line, and the glue is the
interline glue.

21 May 2013 10:27a.m.

TEX for the Impatient

parameter 87

TEX starts a paragraph when it’s in a vertical mode and encounters
an inherently horizontal command. In particular, it’s in a vertical mode
when it’s just finished a paragraph, so the horizontal material on the line
after a blank input line starts the next paragraph in a natural way. There
are many kinds of inherently horizontal commands, but the most common
kind is an ordinary character, e.g., a letter.

The \indent and \noindent commands (pp.111, 112) are also inher-
ently horizontal commands that tell TEX either to indent or not to indent
the beginning of a paragraph. Any other horizontal command in verti-
cal mode causes TEX to do an implicit \indent. Once TEX has started
a paragraph, it’s in ordinary horizontal mode. It first obeys any com-
mands that are in \everypar. It then proceeds to collect items for the
paragraph until it gets a signal that the paragraph is ended. At the end
of the paragraph it resets the paragraph shape parameters \parshape,
\hangindent, and \looseness.

TEX ordinarily translates a blank line into \par. It also inserts a \par
into the input whenever it’s in horizontal mode and sees an intrinsically
vertical command. So ultimately the thing that ends a paragraph is
always a \par command.

When TEX receives a \par command, it first fills out!® the paragraph
it’s working on. It then breaks the paragraph into lines, adds the resulting
list of items to the enclosing vertical list, and exercises the page builder
(in the case where the enclosing vertical list is the main vertical list). If
the paragraph was ended by an intrinsically vertical command, TEX then
executes that command.

parameter. The term parameter has two different meanings—it can
refer either to a TEX parameter or to a macro parameter.

A TgX parameter is a control sequence that names a value. The value
of a parameter can be a number, a dimension, an amount of glue or
muglue, or a token list. For example, the \parindent parameter specifies
the distance that TEX skips at the start of an indented paragraph.

You can use the control sequence for a parameter either to retrieve the
value of the parameter or to set that value. TEX interprets the control
sequence as a request for a value if it appears in a context where a value
is expected, and as an assignment otherwise. For example:

\hskip\parindent
produces horizontal glue whose natural size is given by \parindent, while:

\parindent = 2pc % (or \parindent 2pc)

16 More precisely, it executes the commands:
\unskip \penalty10000 \hskip\parfillskip

thus appending items for these commands to the end of the current horizontal list.

N© 107

21 May 2013 10:27 a.m.

TEX for the Impatient NO 108

88 Concepts \ §4

sets \parindent to a length of two picas. The assignment:
\parindent = 1.5\parindent

uses \parindent in both ways. Its effect is to multiply the value of
\parindent by 1.5.

You can think of a parameter as a built-in register. You'll find a com-
plete list of the TEX parameters on pages 272—275 of The TEXbook.

A macro parameter is a placeholder for text that is to be plugged into
the definition of a macro. See “macro” (p.75) for more information about
this kind of parameter.

penalty. A penalty is an item that you can include in a horizontal,
vertical, or math list in order to discourage TEX from breaking the list at
that point or encourage TEX to break the list there. A positive penalty
indicates a bad break point, while a negative penalty indicates a good
break point. Breaking an ordinary horizontal list produces a line break,
while breaking an ordinary vertical list produces a page break. (A penalty
has no effect in restricted horizontal or internal vertical mode.)

You can use the \penalty command (pp.121, 136) to insert a penalty
explicitly. A penalty of 10000 or more prevents a break, while a penalty
of —10000 or less forces a break.

plain TX. Plain TgX is the form of TEX described in this book and in
The TEXbook. Plain TEX is part of the standard TEX system, so docu-
ments that use only the facilities of plain TEX can usually be transferred
from one installation to another without difficulty.

Plain TEX consists of the primitive commands together with a large
collection of macros and other definitions. These additional definitions
are given in Appendix B of The TEXbook. They should also be in the file
plain.tex somewhere in your computer system.

primitive. A primitive command is one whose definition is built into
the TEX computer program. In contrast, a command that is not primitive
is defined by a macro or some other form of definition written in TEX itself.
The commands in plain TEX consist of the primitive commands together
with other commands defined in terms of the primitive ones.

reference point. The reference point of a box is the point where the
left edge of the box intersects its baseline. When TEX is processing a
horizontal or vertical list, it uses the reference points of the boxes in the
list to line up those boxes horizontally or vertically (see “box”, p.51).

21 May 2013 10:27a.m.

TEX for the Impatient

register 89

register. A register is a named location for storing a value. It is much
like a variable in a programming language. TEX has five kinds of registers,
as shown in the following table:

Register type Contents

box a box
count a number
dimen a dimension
muskip muglue
skip glue

toks a token list

The registers of each type are numbered from 0 to 255. You can access
register n of category ¢ by using the form ‘\cn’, e.g., \muskip192. You
can use a register anywhere that information of the appropriate type is
called for. For instance, you can use \count12 in any context calling for
a number or \skipO in any context calling for glue.

You put information into a register by assigning something to it:

\setbox3 = \hbox{lagomorphs are not mesomorphs}
\count255 = -1

The first assignment constructs an hbox and assigns it to box regis-
ter 3. You can subsequently use ‘\box3’ wherever a box is called for,
and you will get just that hbox.!” The second assignment assigns —1 to
count register 255.

A register of a given type, e.g., a glue register, behaves just like a
parameter of that type. You retrieve its value or assign to it just as
you would with a parameter. Some TEX parameters, e.g., \pageno, are
implemented as registers, in fact.

Plain TEX uses many registers for its own purposes, so you should not
just pick an arbitrary register number when you need a register. Instead
you should ask TEX to reserve a register by using one of the commands
\newbox, \newcount, \newdimen, \newmuskip, \newskip, or \newtoks
(p.244). These commands are outer, so you can’t use them in a macro
definition. If you could, you’d use up a register every time the macro was
called and probably run out of registers before long.

Nonetheless you can with some caution use any register temporarily
within a group, even one that TEX is using for something else. After TEX
finishes executing the commands in a group, it restores the contents of
every register to what they were before it started executing the group.
When you use an explicitly numbered register inside a group, you must
be sure that the register isn’t modified by any macro that you might call

17 But note carefully: using a box register also empties it so that its contents become
void. The other kinds of registers don’t behave that way. You can use the \copy
command (p. 164) to retrieve the contents of a box register without emptying it.

N© 109

21 May 2013 10:27 a.m.

TEX for the Impatient N9 110

90 Concepts \ §4

within the group. Be especially careful about using arbitrary registers in
a group that calls macros that you didn’t write yourself.

TEX reserves certain registers for special purposes: \countO through
\count9 for page numbering information and \box255 for the contents of
a page just before it is offered to the output routine. Registers \dimen0O—
\dimen9, \skipO-\skip9, \muskipO—\muskip9, \boxO-\box9, and the
255 registers other than \box255 are generally available as “scratch” reg-
isters. Thus plain TEX provides only one scratch register, \count255, for
counts. See pages 122 and 346 of The TEXbook for conventions to follow
in choosing register numbers.

You can examine the contents of registers during a TEX run with the
\showthe command (p. 253), e.g., with ‘\showthe\dimen0’.

restricted mode. A restricted mode is a mode that TEX is in when
it is assembling an hbox or a vbox. We follow The TEXbook in us-
ing the term “internal vertical mode” for what you might expect to be
“restricted vertical mode”. See “horizontal mode” (p.69) and “vertical
mode” (p.94).

rule. A rule is a solid black rectangle. A rule, like a box, has width,
height, and depth. The vertical dimension of the rectangle is the sum of
its height and its depth. An ordinary horizontal or vertical straight line
is a special case of a rule.

A rule can be either horizontal or vertical. The distinction between a
horizontal rule and a vertical one has to do with how you produce the
rule, since a vertical rule can be short and fat (and therefore look like
a horizontal line), while a horizontal rule can be tall and skinny (and
therefore look like a vertical line). TEX’s notion of a rule is more general
than that of typographers, who think of a rule as a line and would not
usually call a square black box a rule.

You can produce a horizontal rule using the \hrule command and
a vertical rule using the \vrule command (p.172). For example, the
control sequence \hrule by itself produces a thin rule that runs across
the page, like this:

The command ‘\vrule height .25in’ produces a vertical rule that
runs .25 inches down the page like this:

There are two differences between horizontal rules and vertical rules:

1) For a horizontal rule, TEX defaults the width to the width of the
smallest box or alignment that encloses it. For a vertical rule, TEX
defaults the height and depth in the same way. (The default is the
size that you get if you don’t give a size explicitly for that dimension.)

21 May 2013 10:27a.m.

TEX for the Impatient NO 111

script size 91

2) A horizontal rule is an inherently vertical item that cannot participate
in a horizontal list, while a vertical rule is an inherently horizontal
item that cannot participate in a vertical list. This behavior may
seem strange at first but there is good reason for it: a horizontal rule
ordinarily runs visually from left to right and thus separates items in
a vertical list, while a vertical rule ordinarily runs visually from top to
bottom and thus separates items in a horizontal list.

If you construct a rule with three explicit dimensions, it will look the
same whether you make it a horizontal rule or a vertical rule. For exam-
ple, the command ‘\vrule height1lpt depth2pt width3in’ produces this
horizontal-looking rule:

You'll find a precise statement of TEX'’s treatment of rules on pages 221—
222 of The TEXbook.

script size. Script size describes one of the three related fonts in a
family. Script size is smaller than text size but larger than scriptscript
size. TEX uses script size for subscripts and superscripts, as well as for
the numerators and denominators of fractions in text.

scriptscript size. Scriptscript size describes the smallest of the
three related fonts in a family. TEX uses scriptscript size for second-
order subscripts, superscripts, numerators, and denominators. For exam-
ple, TEX will use scriptscript size for a subscript on a subscript or for a
superscript on a scriptsize numerator.

shrink. See “glue” (p.66).

space. You can cause TEX to put space between two items in sev-
eral ways:

1) You can write something that TEX treats as a space token: one or
more blank characters, the end of a line (the end-of-line character
acts like a space), or any command that expands into a space token.
TEX generally treats several consecutive spaces as equivalent to a
single one, including the case where the spaces include a single end-
of-line. (An empty line indicates the end of a paragraph; it causes
TEX to generate a \par token.) TEX adjusts the size of this kind of
space to suit the length required by the context.

2) You can write a skip command that produces the glue you specify in
the command. The glue can stretch or shrink, producing more or less
space. You can have vertical glue as well as horizontal glue. Glue
disappears whenever it is next to a line or page break.

3) You can write a kern. A kern produces a fixed amount of space that
does not stretch or shrink and does not disappear at a line or page

21 May 2013 10:27 a.m.

TEX for the Impatient NO 112

92 Concepts \ §4

break (unless it is immediately followed by glue). The most common
use of a kern is to establish a fixed spatial relationship between two
adjacent boxes.

Glue and kerns can have negative values. Negative glue or a negative
kern between adjacent items brings those items closer together.

stretch. See “glue” (p.66).

strut. A strut is an invisible box whose width is zero and whose height
and depth are slightly more than those of a “normal” line of type in the con-
text. Struts are useful for obtaining uniform vertical spacing when TEX’s
usual line spacing is disabled, e.g., within a math formula or within a hor-
izontal alignment where you’ve specified \offinterlineskip. Because a
strut is taller and deeper than everything else on its line, it determines the
height and depth of the line. You can produce a strut with the \strut
command (p.167) or the \mathstrut command (p.168). You can use
\strut anywhere, but you can only use \mathstrut when TEX is in math
mode. A strut in plain TEX has height 8.5 pt and depth 3.5 pt, while a
math strut has the height and depth of a left parenthesis in the current
style (so it’s smaller for subscripts and superscripts).
Here’s an example showing how you might use a strut:

\vbox{\hsize = 3in \raggedright
\strut Here is the first of two paragraphs that we’re
setting in a much narrower line length.\strut}
\vbox{\hsize = 3in \raggedright
\strut Here is the second of two paragraphs that we’re
setting in a much narrower line length.\strut}

This input yields:
Here is the first of two paragraphs that we're
setting in a much narrower line length.
Here is the second of two paragraphs that
we’re setting in a much narrower line length.

Without the struts the vboxes would be too close together. Similarly,
in the formula:

$\overline{x\mathstrut} \otimes \overline{t\mathstrutl}$

the math struts cause both bars to be set at the same height even though
the ‘2’ and the ‘¢’ have different heights:

Tt
style. Material in a math formula is set in one of eight styles, depending
on the context. Knowing about styles can be useful if you want to set

part of a formula in a different size of type than the one that TEX has
chosen according to its usual rules.

21 May 2013 10:27a.m.

| TEX for the Impatient NO 113
TEX MpX 93
The four primary styles are:
display style (for formulas displayed on a line by themselves)
text style (for formulas embedded in ordinary text)
script style (for superscripts and subscripts)
scriptscript style (for superscripts on superscripts, etc.)

The other four styles are so-called cramped variants. In these variants
superscripts aren’t raised as high as usual, and so the formula needs
less vertical space than it otherwise would. See pages 140-141 of The
TEXbook for the details of how TEX selects the style.

TEX chooses a size of type according to the style:

» Display style and text style are set in text size, like ‘this’.
= Script style is set in script size, like ‘this’.
= Scriptscript style is set in scriptscript size, like ‘s’

See “family” (p. 62) for more information about these three sizes.

TEX doesn’t have a “scriptscriptscript” style because such a style would
usually have to be set in a size of type too small to read. TEX therefore
sets third-order subscripts, superscripts, etc., using the scriptscript style.

Once in a while you may find that TEX has set a formula in a different
style than the one you’d prefer. You can override TEX’s choice with the
\textstyle, \displaystyle, \scriptstyle, and \scriptscriptstyle
commands (p. 198).

X MX. (a) A variant of TEX used for mathematical typesetting in
Central American countries. (b) A spicy cuisine favored by the TEXni-
cians of El Paso.

text math. We use the term text math to refer to a math formula
set within a line of text, i.e., enclosed in $’s. TEX sets text math in
text math mode.

text size. Text size describes the largest of the three related fonts in a
family. TEX uses text size for ordinary symbols appearing in math mode.

token. A token is either a single character tagged with a category code,
or a control sequence. TEX reads characters from a file using its eyes (see
“anatomy of TEX”, p.46) and groups the characters into tokens using
its mouth. When a token reaches TEX’s stomach, TEX interprets it as a
command unless it’s part of an argument of a preceding command.

unit of measure. See “dimension” (p.60).

21 May 2013 10:27 a.m.

TEX for the Impatient NO 114

94 Concepts \ §4

vbox. A wvbox (vertical box) is a box that TEX constructs by placing the
items of a vertical list one after another, top to bottom. A vbox, taken
as a unit, is neither inherently horizontal nor inherently vertical, i.e., it
can appear as an item of either a vertical list or a horizontal list. You can
construct a vbox with the \vbox or the \vtop command (p.161). The
difference is that for \vbox, the reference point of the constructed vbox
is derived from that of the last (and usually bottommost) constituent
list item, but for \vtop, it’s that of the first (and usually topmost) con-
stituent list item.

vertical list. A wertical list is a list of items that TEX has produced
while it is in one of its vertical modes, i.e., assembling either a vbox or a
page. See “vertical mode” below.

vertical mode. When TEX is assembling either a vbox or the main
vertical list from which pages are derived, it is in one of two wvertical
modes: ordinary vertical mode for assembling the main vertical list, and
internal vertical mode for assembling vboxes. Whenever TEX is in a
vertical mode its stomach (see “anatomy of TEX”, p.46) is constructing a
vertical list of items (boxes, glue, penalties, etc.). TEX typesets the items
in the list one below another, top to bottom.

A vertical list can’t contain any items produced by inherently horizontal
commands, e.g., \hskip or an ordinary (nonspace) character. '8

« If TEX is assembling a vertical list in ordinary vertical mode and
encounters an inherently horizontal command, it switches to ordinary
horizontal mode.

« If TEX is assembling a vertical list in internal vertical mode and
encounters an inherently horizontal command, it complains.

Two commands that you might at first think are inherently vertical are
in fact inherently horizontal: \valign (p.179) and \vrule (p.172). See
page 283 of The TEXbook for a list of the inherently horizontal commands.

It’s particularly important to be aware that TEX considers an ordinary
character other than a space character to be inherently horizontal. If
TEX suddenly starts a new paragraph when you weren’t expecting it, a
likely cause is a character that TEX encountered while in vertical mode.
You can convince TEX not to treat that character as inherently horizontal
by enclosing it in an hbox since the \hbox command, despite its name, is
neither inherently horizontal nor inherently vertical.

whatsit. A whatsit is an item of information that tells TEX to carry out
some action that doesn’t fit into its ordinary scheme of things. A whatsit
can appear in a horizontal or vertical list, just like a box or a glue item.

18 TEX ignores any space characters that it encounters while it’s in a vertical mode.

21 May 2013 10:27a.m.

TEX for the Impatient

width 95

TEX typesets a whatsit as a box having zero width, height, and depth—in
other words, a box that contains nothing and occupies no space.
Three sorts of whatsits are built into TEX:

» The \openout, \closeout, and \write commands (p. 249) produce a
whatsit for operating on an output file. TEX postpones the operation
until it next ships out a page to the .dvi file (unless the operation is
preceded by \immediate). TEX uses a whatsit for these commands
because they don’t have anything to do with what it’s typesetting
when it encounters them.

= The \special command (p.250) tells TEX to insert certain text di-
rectly into the .dvi file. As with the \write command, TEX post-
pones the insertion until it next ships out a page to the .dvi file. A
typical use of \special would be to name a graphics file that the
device driver should incorporate into your final output.

= When you change languages with the \language or \setlanguage
commands (p.128), TEX inserts a whatsit that instructs it to use a
certain set of hyphenation rules later on when it’s breaking a para-
graph into lines.

A particular implementation of TEX may provide additional whatsits.
width. The width of a box is the amount of horizontal space that it

occupies, i.e., the distance from its left edge to its right edge. The typeset
material in a box can be wider than the box itself.

N© 115

21 May 2013 10:27 a.m.

TEX for the Impatient NO 116

21 May 2013 10:27a.m.

TEX for the Impatient NO 117

D |Commands
B o composing
paragraphs

This section covers commands that deal with characters, words, lines,
and entire paragraphs. For an explanation of the conventions used in this
section, see “Descriptions of the commands” (p. 3).

Characters and accents

B Letters and ligatures for European alphabets

\AA Scandinavian letter A

\aa Scandinavian letter a

\AE /[ligature

\ae & ligature

\L Polish letter L

\1 Polish letter t

\0 Danish/Norwegian letter @

\o Danish/Norwegian letter ¢

\OE (& ligature

\oe ce ligature

\ss German letter 83

These commands produce various letters and ligatures from European
alphabets. They are useful for occasional words and phrases in these
languages—but if you need to typeset a large amount of text in a Euro-
pean language, you should probably be using a version of TEX adapted
to that language.’

L The TEX Users Group (p-18) can provide you with information about European
language versions of TEX.

21 May 2013 10:27 a.m.

TEX for the Impatient

98 Commands for composing paragraphs \ §5

You’ll need a space after these commands when you use them within
a word, so that TEX will treat the following letters as part of the word
rather than as part of the command. You needn’t be in math mode to
use these commands.

Ezample:

{\it les \oe vres de Moli\‘ere}
produces:

les evres de Moliere

B Special symbols

\# pound sign #
\$ dollar sign $
\% percent sign %
\& ampersand &
_ underscore _
\1qg left quote °
\rq right quote’
\lbrack left bracket |
\rbrack right bracket]
\dag dagger symbol t
\ddag double dagger symbol I
\copyright copyright symbol (©
\P paragraph symbol q
\S section symbol §
These commands produce various special characters and marks. The first
five commands are necessary because TEX by default attaches special
meanings to the characters (#, $, %, &, _). You needn’t be in math mode
to use these commands.
You can use the dollar sign in the Computer Modern italic fonts to get
the pound sterling symbol, as shown in the example below.

Ezxample:
\dag It’1l only cost you \$9.98 over here, but in England
it’s {\it \$}24.98.

produces:
1It’1l only cost you $9.98 over here, but in England it’s £24.98.

\TeX

This command produces the TEX logo. Remember to follow it by \, or
to enclose it in a group when you want a space after it.

N© 118

21 May 2013 10:27a.m.

TEX for the Impatient NO 119

Characters and accents 99

Example:
A book about \TeX\ is in your hands.

produces:
A book about TEX is in your hands.

\dots
This command produces an ellipsis, i.e., three dots, in ordinary text. It’s
intended for use in mathematical writing; for an ellipsis between ordinary
words, you should use $\1dots$ (p.203) instead. Since \dots includes
its own space, you shouldn’t follow it by _.
Ezxample:

The sequence $x_1%, x_2%, \dots, x_∞

does not terminate.

produces:
The sequence x1, X2, ..., Too does not terminate.

See also: “Miscellaneous ordinary math symbols” (p. 188).

B Arbitrary characters

\char (charcode)
This command produces the character located at position (charcode) of
the current font.
Ezxample:
{\char65} {\char ‘A} {\char ‘\A}
produces:

AAA

\mathchar (mathcode)
This command produces the math character whose class, family, and font
position are given by (mathcode). 1t is only legal in math mode.
Ezxample:
\def\digger{\mathchar "027F} 7, Like \spadesuit in plain TeX.
% Class 0, family 2, font position "7F.
\digger
produces:

[)

See also: \delimiter (p.204).

21 May 2013 10:27 a.m.

| TEX for the Impatient NO 120
100 Commands for composing paragraphs \ §5
B Accents
\’ acute accent as in é
\. dot accent as in n
\= macron accent as in T
\~ circumflex accent as in 6
\¢ grave accent as in ¢
\" umlaut accent as in 6

\~ tilde accent as in a

\c cedilla accent as in ¢

\d underdot accent as in r

\H Hungarian umlaut accent as in 6

\t tie-after accent as in uu

\u breve accent as in

\v check accent as in 6

These commands produce accent marks in ordinary text. You’ll usu-
ally need to leave a space after the ones denoted by a single letter (see
“Spaces”, p.12).

Ezample:

Add a soup\c con of \’elan to my pin\~a colada.
produces:

Add a soupcon of élan to my pina colada.

\i

\j

These commands produce dotless versions of the letters ‘i’ and ‘j’. You
should use them instead of the ordinary ‘i’ and ‘j” when you are putting an
accent above those letters in ordinary text. Use the \imath and \jmath
commands (p. 188) for dotless ‘i’s and ‘j’s in math formulas.

Example:

long ‘i’ as in 1\=\i fe \quad \v\j
produces:

long ‘i’ as in Iiffe j

\accent (charcode)

This command puts an accent over the character following this command.
The accent is the character at position {charcode) in the current font. TEX
assumes that the accent has been designed to fit over a character 1 ex high
in the same font as the accent. If the character to be accented is taller
or shorter, TEX adjusts the position accordingly. You can change fonts

21 May 2013 10:27a.m.

TEX for the Impatient NO 121

Characters and accents 101

between the accent and the next character, thus drawing the accent char-
acter and the character to be accented from different fonts. If the accent
character isn’t really intended to be an accent, TEX won’t complain; it
will just typeset something ridiculous.

FEzxample:

1’H\accent94 otel des Invalides

% Position 94 of font cmrl10 has a circumflex accent.
produces:

I’Hotel des Invalides

See also: Math accents (p. 199).

B Defeating boundary ligatures

\noboundary

You can defeat a ligature or kern that TEX applies to the first or last
character of a word by putting \noboundary just before or just after the
word. Certain fonts intended for languages other than English contain
a special boundary character that TEX puts at the beginning and end
of each word. The boundary character occupies no space and is invisible
when printed. It enables TEX to provide different typographical treatment
to characters at the beginning or end of a word, since the boundary
character can be part of a sequence of characters to be kerned or replaced
by a ligature. (None of the standard TEX fonts contain this boundary
character.) The effect of \noboundary is to delete the boundary character
if it’s there, thus preventing TEX from recognizing the ligature or kern.

21 May 2013 10:27 a.m.

TEX for the Impatient NO 122

102 Commands for composing paragraphs \ §5

Selecting fonts

B Particular fonts

\fivebf use 5-point bold font

\fivei wuse 5-point math italic font
\fiverm use 5-point roman font
\fivesy use 5-point math symbol font
\sevenbf use 7-point bold font
\seveni use 7-point math italic font
\sevenrm use 7-point roman font
\sevensy use 7-point math symbol font
\tenbf use 10-point bold text font
\tenex use 10-point math extension font
\teni use 10-point math italic font
\tenrm use 10-point roman text font
\tensl wuse 10-point slanted roman font
\tensy use 10-point math symbol font
\tenit wuse 10-point italic font

\tentt wuse 10-point typewriter font

These commands cause TEX to typeset the following text in the specified
font. Normally you would enclose one of these font-selecting commands in
a group, together with the text to be set in the selected font. Outside of a
group a font-selecting command is effective until the end of the document
(unless you override it with another such command).

Ezxample:
See how I’ve reduced my weight---from
120 1bs.\ to {\sevenrm 140 1lbs}.

produces:
See how I've reduced my weight—from 120 1bs. to 140 1bs.

\nullfont

This command selects a font, built into TEX, that has no characters in
it. TEX uses it as a replacement for an undefined font in a family of
math fonts.

21 May 2013 10:27a.m.

TEX for the Impatient NO 123

Uppercase and lowercase 103

B Type styles

% \bf use boldface type
\it use italic type
\rm use roman type
\sl use slanted type
\tt use typewriter type
These commands select a type style without changing the typeface or the
point size.2 Normally you would enclose one of these type style commands
in a group, together with the text to be set in the selected font. Outside
of a group a type style command is effective until the end of the document
(unless you override it with another such command).

Ezxample:

The Dormouse was {\it not} amused.
produces:

The Dormouse was not amused.

See also: “Fonts in math formulas” (p.209).

Uppercase and lowercase

\lccode (charcode) [(number) table entry]
\uccode (charcode) [(number) table entry]
The \lccode and \uccode values for the 256 possible input characters
specify the correspondence between the lowercase and uppercase forms
of letters. These values are used by the \lowercase and \uppercase
commands respectively and by TEX’s hyphenation algorithm.

TgX initializes the values of \1ccode and \uccode as follows:

» The \1lccode of a lowercase letter is the ASCII code for that letter.

= The \lccode of an uppercase letter is the ASCII code for the corre-
sponding lowercase letter.

= The \uccode of an uppercase letter is the ASCII code for that letter.

= The \uccode of a lowercase letter is the ASCII code for the corre-
sponding uppercase letter.

2 TEX does not provide predefined commands for changing just the point size, e.g.,
\eightpoint. Supporting such commands would require a great number of fonts,
most of which would never be used. Such commands were, however, used in typeset-
ting The TEXbook.

21 May 2013 10:27 a.m.

TEX for the Impatient

104 Commands for composing paragraphs \ §5

» The \1ccode and \uccode of a nonletter are both zero.

Most of the time there’s no reason to change these values, but you
might want to change them if you’re using a language that has more
letters than English.

Ezxample:

\char\uccode ‘s \char\lccode‘a \char\lccode‘M
produces:

Sam

\lowercase { (token list) }

\uppercase { (token list) }

These commands convert the letters in (token list), i.e., those tokens
with category code 11, to their lowercase and uppercase forms. The
conversion of a letter is defined by its \1ccode (for lowercase) or \uccode
(for uppercase) table value. Tokens in the list that are not letters are
not affected—even if the tokens are macro calls or other commands that
expand into letters.

Ezample:

\def\x{Cd} \lowercase{Ab\x} \uppercase{Ab\x}
produces:

abCd ABCd

Interword spacing

\u
This command explicitly produces an interword space called a “control
space”. A control space is useful when a letter occurs immediately after
a control sequence, or in any other circumstance where you don’t want
two tokens to be run together in the output. The amount of space pro-
duced by \. is independent of preceding punctuation, i.e., its space factor
(p-107) is 1000.

Incidentally, if you want to print the ‘)’ character that we’ve used here
to denote a space, you can get it by typing {\tt \char ‘\ }.

Ezample:
The Dormouse was a \TeX\ expert, but he never let on.

produces:
The Dormouse was a TEX expert, but he never let on.

N© 124

21 May 2013 10:27a.m.

TEX for the Impatient NO© 125

Interword spacing 105

\space
This command is equivalent to an input space character. It differs from
\u in that its width can be affected by preceding punctuation.

Ezxample:
Yes.\space No.\space Maybe.\par
Yes._No._Maybe.

produces:
Yes. No. Maybe.
Yes. No. Maybe.

M
This construct produces the end of line character. It normally has two
effects when TEX encounters it in your input:

1) Tt acts as a command, producing either an input space (if it comes
at the end of a nonblank line) or a \par token (if it comes at the end
of a blank line).

2) It ends the input line, causing TEX to ignore the remaining characters
on the line.

However, ~~M does not end the line when it appears in the context ‘\~"M,
denoting the ASCII code for control-M (the number 13). You can change
the meaning of ~~M by giving it a different category code. See page 55 for
a more general explanation of the ~~ notation.

Ezxample:
Hello. " "MGoodbye.
Goodbye again.\par
The \char ‘\""M\ character.\par
% The fl ligature is at position 13 of font cmriO
\number ‘\""M\ is the end of line code.\par
Again, \number ‘""M is the end of line code,
isn’t it? ¥ 32 is the ASCII code for a space
produces:
Hello. Goodbye again.
The fl character.
13 is the end of line code.
Again, 32isn’t it?

P
The active character ‘~’, called a “tie”, produces a normal interword

space between two words and links those words so that a line break will
not occur between them. You should use a tie in any context where

(~)

21 May 2013 10:27 a.m.

TEX for the Impatient

106 Commands for composing paragraphs \ §5

a line break would be confusing, e.g., before a middle initial, after an
abbreviation such as “Dr.”, or after “Fig.” in “Fig. 8”.

Ezample:
P.D.Q."Bach (1807--1742), the youngest and most
imitative son of Johann™S. Bach, composed the
{\sl Concerto for Horn and Hardart}.

produces:
P.D.Q. Bach (1807-1742), the youngest and most imitative son of Jo-
hann S. Bach, composed the Concerto for Horn and Hardart.

\/

Every character in a TEX font has an “italic correction” associated with
it, although the italic correction is normally zero for a character in an
unslanted (upright) font. The italic correction specifies the extra space
that’s needed when you're switching from a slanted font (not necessarily
an italic font) to an unslanted font. The extra space is needed because a
slanted character projects into the space that follows it, making the space
look too small when the next character is unslanted. The metrics file for
a font includes the italic correction of each character in the font.

The \/ command produces an italic correction for the preceding char-
acter. You should insert an italic correction when you’re switching from
a slanted font to an unslanted font, except when the next character is a
period or comma.

Ezxample:
However, {\it somebody} ate {\it something}: that’s clear.

However, {\it somebody\/} ate {\it something\/}:
that’s clear.

produces:
However, somebody ate something: that’s clear.
However, somebody ate something: that’s clear.

\frenchspacing
\nonfrenchspacing

TEX normally adjusts the spacing between words to account for punc-
tuation marks. For example, it inserts extra space at the end of a sen-
tence and adds some stretch to the glue following any punctuation mark
there. The \frenchspacing command tells TEX to make the interword
spacing independent of punctuation, while the \nonfrenchspacing com-
mand tells TEX to use its normal spacing rules. If you don’t specify
\frenchspacing, you’ll get TEX’s normal spacing.

N© 126

21 May 2013 10:27a.m.

TEX for the Impatient

Interword spacing 107

See page 13 for advice on how to control TEX’s treatment of punctua-
tion at the end of sentences.

Ezxample:
{\frenchspacing An example: two sentences. Right? No.\par}
{An example: two sentences. Right? No. \parl}y
produces:
An example: two sentences. Right? No.
An example: two sentences. Right? No.

\obeyspaces
TEX normally condenses a sequence of several spaces to a single space.
\obeyspaces instructs TEX to produce a space in the output for each
space in the input. \obeyspaces does not cause spaces at the beginning
of a line to show up, however; for that we recommend the \obeywhite-
space command defined in eplain.tex (p.293). \obeyspaces is often
useful when you're typesetting something, computer input for example, in
a monospaced font (one in which each character takes up the same amount
of space) and you want to show exactly what each line of input looks like.
You can use the \obeylines command (p. 122) to get TEX to follow the
line boundaries of your input. \obeylines is often used in combination
with \obeyspaces.

Example:
These spaces are closed up
{\obeyspaces but these are not }.
produces:

These spaces are closed up but these are not

\spacefactor [(number) parameter |
\spaceskip [{glue) parameter |
\xspaceskip [(glue) parameter |

\sfcode (charcode) [(number) table entry]

These primitive parameters affect how much space TEX puts between two
adjacent words, i.e., the interword spacing. The normal interword spacing
is supplied by the current font. As TEX is processing a horizontal list, it
keeps track of the space factor f in \spacefactor. As it processes each
input character ¢, it updates f according to the value of f., the space
factor code of ¢ (see below). For most characters, f. is 1000 and TEX
sets f to 1000. (The initial value of f is also 1000.) When TEX sees an
interword space, it adjusts the size of that space by multiplying the stretch
and shrink of that space by f/1000 and 1000/ f respectively. Thus:

1) If f = 1000, the interword space keeps its normal value.
2) If f < 1000, the interword space gets less stretch and more shrink.

N©O 127

21 May 2013 10:27 a.m.

TEX for the Impatient

108 Commands for composing paragraphs \ §5

3) If f > 1000, the interword space gets more stretch and less shrink.

In addition, if f > 2000 the interword space is further increased by the
“extra space” parameter associated with the current font.

Each input character ¢ has an entry in the \sfcode (space factor code)
table. The \sfcode table entry is independent of the font. Usually TEX
just sets f to f. after it processes c. However:

» If f. is zero, TEX leaves f unchanged. Thus a character such as)’
in plain TEX, for which f. is zero, is essentially transparent to the
interword space calculation.

 If f <1000 < f., TEX sets f to 1000 rather than to f., i.e., it refuses
to raise f very rapidly.

The \sfcode value for a period is normally 3000, which is why TEX
usually puts extra space after a period (see the rule above for the case
f > 2000). Noncharacter items in a horizontal list, e.g., vertical rules,
generally act like characters with a space factor of 1000.

You can change the space factor explicitly by assigning a different nu-
merical value to \spacefactor. You can also override the normal inter-
word spacing by assigning a different numerical value to \xspaceskip or
to \spaceskip:

» \xspaceskip specifies the glue to be used when f > 2000; in the case
where \xspaceskip is zero, the normal rules apply.

= \spaceskip specifies the glue to be used when f < 2000 or when
\xspaceskip is zero; if \spaceskip is zero, the normal rules apply.
The stretch and shrink of the \spaceskip glue, like that of the ordi-
nary interword glue, is modified according to the value of f.

See page 76 of The TEXbook for the precise rules that TEX uses in cal-
culating interword glue, and pages 285-287 of The TEXbook for the ad-
justments made to \spacefactor after various items in a horizontal list.

Centering and justifying lines

\centerline (argument)

\leftline (argument)

\rightline (arqument)

The \centerline command produces an hbox exactly as wide as the cur-
rent line and places (argument) at the center of the box. The \leftline
and \rightline commands are analogous; they place (argument) at the
left end or at the right end of the box. If you want to apply one of
these commands to several consecutive lines, you must apply it to each
one individually. See page 306 for an alternate approach.

N© 128

21 May 2013 10:27a.m.

TEX for the Impatient NO 129

Centering and justifying lines 109

Don’t use these commands within a paragraph—if you do, TEX prob-
ably won’t be able to break the paragraph into lines and will complain
about an overfull hbox.

FEzxzample:

\centerline{Grand Central Station}

\leftline{left of Karl Marx}

\rightline{right of Genghis Khan}
produces:

Grand Central Station
left of Karl Marx
right of Genghis Khan

% \line (argument)
This command produces an hbox containing (argument). The hbox is
exactly as wide as the current line, i.e., it extends from the right margin
to the left margin.

Ezxample:

\line{ugly \hfil suburban \hfil sprawl}

% Without \hfil you’d get an ‘underfull box’ from this.
produces:

ugly suburban sprawl

\1lap (argument)

\rlap (argument)

These commands enable you to produce text that overlaps whatever hap-
pens to be to the left or to the right of the current position. \1lap back-
spaces by the width of (argument) and then typesets (argument). \rlap
is similar, except that it typesets (argument) first and then backspaces.
\1lap and \rlap are useful for placing text outside of the current margins.
Both \1lap and \rlap do their work by creating a box of zero width.

You can also use \1llap or \rlap to construct special characters by
overprinting, but don’t try it unless you’re sure that the characters you're
using have the same width (which is the case for a monospaced font such
as cmtt10, the Computer Modern 10-point typewriter font).

21 May 2013 10:27 a.m.

TEX for the Impatient

110 Commands for composing paragraphs \ §5

Example:
\noindent\llap{off left }\line{\vrule \Leftarrow
left margin of examples\hfil right margin of examples
\Rightarrow\vrule}\rlap{ off right}
produces:
off left |<= left margin of examples right margin of examples = off right

See also: \hsize (p.114).

Shaping paragraphs

B Starting, ending, and indenting paragraphs

\par

This command ends a paragraph and puts TEX into vertical mode, ready
to add more items to the page. Since TEX converts a blank line in your
input file into a \par token, you don’t ordinarily need to type an explicit
\par in order to end a paragraph.

An important point is that \par doesn’t tell TEX to start a paragraph;
it only tells TEX to end a paragraph. TgEX starts a paragraph when it
is in ordinary vertical mode (which it is after a \par) and encounters an
inherently horizontal item such as a letter. As part of its ceremony for
starting a paragraph, TEX inserts an amount of vertical space given by the
parameter \parskip (p.141) and indents the paragraph by a horizontal
space given by \parindent (p.113).

You can usually cancel any interparagraph space produced by a \par
by giving the command \vskip -\lastskip. It can often be helpful to
do this when you’re writing a macro that is supposed to work the same
way whether or not it is preceded by a blank line.

You can get TEX to take some special action at the start of each para-
graph by placing the instructions in \everypar (p.113).

See pages 283 and 286 of The TpXbook for the precise effect of \par.

Ezample:
\parindent = 2em
‘‘Can you row?’’ the Sheep asked, handing Alice a pair of
knitting-needles as she was speaking.\par ‘‘Yes, a little}
---but not on land---and not with needles---’’ Alice was
starting to say, when suddenly the needles turned into oars.

N© 130

21 May 2013 10:27a.m.

TEX for the Impatient NO 131

Shaping paragraphs 111

produces:
“Can you row?” the Sheep asked, handing Alice a pair of knitting-
needles as she was speaking.
“Yes, a little—but not on land—and not with needles—" Alice was
starting to say, when suddenly the needles turned into oars.

\endgraf

This command is a synonym for the \par primitive command. It is
useful when you’ve redefined \par but still want access to the original
definition of \par.

\parfillskip [(glue) parameter]

This parameter specifies the horizontal glue that TEX inserts at the end
of a paragraph. The default value of \parfillskip is Opt plus 1fil,
which causes the last line of a paragraph to be filled out with blank
space. A value of Opt forces TEX to end the last line of a paragraph at
the right margin.

% \indent
If TEX is in vertical mode, as it is after ending a paragraph, this command
inserts the \parskip interparagraph glue, puts TEX into horizontal mode,
starts a paragraph, and indents that paragraph by \parindent. If TEX is
already in horizontal mode, this command merely produces a blank space
of width \parindent. Two \indents in a row produce two indentations.
As the example below shows, an \indent at a point where TEX would
start a paragraph anyway is redundant. When TgEX is in vertical mode
and sees a letter or some other inherently horizontal command, it starts
a paragraph by switching to horizontal mode, doing an \indent, and
processing the horizontal command.

21 May 2013 10:27 a.m.

TEX for the Impatient NO© 132

112 Commands for composing paragraphs \ §5

Example:
\parindent = 2em This is the first in a series of three
paragraphs that show how you can control indentation. Note
that it has the same indentation as the next paragraph.\par
\indent This is the second in a series of three paragraphs.
It has \indent an embedded indentation.\par
\indent\indent This doubly indented paragraph
is the third in the series.

produces:

This is the first in a series of three paragraphs that show how you
can control indentation. Note that it has the same indentation as the
next paragraph.

This is the second in a series of three paragraphs. It has an
embedded indentation.

This doubly indented paragraph is the third in the series.

% \noindent

If TEX is in vertical mode, as it is after ending a paragraph, this command
inserts the \parskip interparagraph glue, puts TEX into horizontal mode,
and starts an unindented paragraph. It has no effect in horizontal mode,
i.e., within a paragraph. Starting a paragraph with \noindent thus can-
cels the indentation by \parindent that would normally occur there.

A common use of \noindent is to cancel the indentation of the first line
of a paragraph when the paragraph follows some displayed material.

Ezxample:
\parindent = lem
Tied round the neck of the bottle was a label with the
words \smallskip \centerline{EAT ME}\smallskip
\noindent beautifully printed on it in large letters.
produces:
Tied round the neck of the bottle was a label with the words

EAT ME

beautifully printed on it in large letters.

\textindent (argument)

This command tells TEX to start a paragraph and indent it by \par-
indent, as usual. TEX then right-justifies {argument) within the indenta-
tion and follows it with an en space (half an em). Plain TEX uses this com-
mand to typeset footnotes (p. 145) and items in lists (see \item, p. 130).

21 May 2013 10:27a.m.

TEX for the Impatient

Shaping paragraphs 113

Example:
\parindent = 20pt \textindent{\raise 1pt\hbox{\bullet}1}/
You are allowed to use bullets in \TeX\ even if
you don’t join the militia, and many peace-loving
typographers do so.

produces:

® You are allowed to use bullets in TEX even if you don’t join the

militia, and many peace-loving typographers do so.

\parindent [(dimen) parameter |

This parameter specifies the amount by which the first line of each para-
graph is to be indented. As the example below shows, it’s a bad idea
to set both \parindent and \parskip to zero since then the paragraph
breaks are no longer apparent.

Ezxample:
\parindent = 2em This paragraph is indented by 2 ems.
\par \parindent=0Opt This paragraph is not indented at all.
\par Since we haven’t reset the paragraph indentation,
this paragraph isn’t indented either.
produces:
This paragraph is indented by 2 ems.
This paragraph is not indented at all.
Since we haven’t reset the paragraph indentation, this paragraph isn’t
indented either.

\everypar [(token list) parameter |
TR padsemnghtheditokendisintdtvévadygarvhenever it enters horizontal
@@&i,%p%g., when it starts a paragraph. By default \everypar is empty,
bug gira G take eptaRgtionsal-Hiw g\aiplaeery paragraph by putting
theseryzangsder ¢ homa vphipns into a token list

I said, ‘‘Pay attention!’’.\par

I’11 say it again! Pay attention!
produces:

— Now pay attention!

= I said, “Pay attention!”.

= TI'll say it again! Pay attention!

N© 133

21 May 2013 10:27 a.m.

TEX for the Impatient

114 Commands for composing paragraphs \ §5

B Shaping entire paragraphs

\hsize [(dimen) parameter |
This parameter specifies the current line length, i.e., the usual width
of lines in a paragraph starting at the left margin. A great many TEX
commands, e.g., \centerline (p.108) and \hrule (p. 172), implicitly use
the value of \hsize. By changing \hsize within a group you can change
the width of the constructs produced by such commands.

If you set \hsize within a vbox that contains text, the vbox will have
whatever width you’ve given to \hsize.

Plain TEX sets \hsize to 6.5in.

Ezample:
{\hsize = 3.5in % Set this paragraph 3.5 inches wide.
The hedgehog was engaged in a fight with another hedgehog,
which seemed to Alice an excellent opportunity for
croqueting one of them with the other.\parl}/

produces:
The hedgehog was engaged in a fight with another hedge-
hog, which seemed to Alice an excellent opportunity for
croqueting one of them with the other.
T T T [T T T [T T T T T 135in

Ezxample:
\leftline{\raggedright\vtop{\hsize = 1.5in
Here is some text that we put into a paragraph that is
an inch and a half wide.l}\qquad
\vtop{\hsize = 1.5in Here is some more text that
we put into another paragraph that is an inch and a
half wide.}}

produces:
Here is some text that Here is some more text
we put into a paragraph that we put into another
that is an inch and a paragraph that is an
half wide. inch and a half wide.
\narrower

This command makes paragraphs narrower, increasing the left and right
margins by \parindent, the current paragraph indentation. It achieves
this by increasing both \leftskip and \rightskip by \parindent. Nor-
mally you place \narrower at the beginning of a group containing the
paragraphs that you want to make narrower. If you forget to enclose
\narrower within a group, you’ll find that all the rest of your document
will have narrow paragraphs.

N© 134

21 May 2013 10:27a.m.

TEX for the Impatient NO© 135

Shaping paragraphs 115

\narrower affects just those paragraphs that end after you invoke it. If
you end a \narrower group before you’ve ended a paragraph, TEX won’t
make that paragraph narrower.

FEzxzample:
{\parindent = 12pt \narrower\narrower\narrower
This is a short paragraph. Its margins are indented
three times as much as they would be
had we used just one ‘‘narrower’’ command.\par}

produces:

This is a short paragraph. Its margins are indented
three times as much as they would be had we used just
one “narrower” command.

\leftskip [(glue) parameter]
\rightskip [(glue) parameter |

These parameters tell TEX how much glue to place at the left and at the
right end of each line of the current paragraph. We’ll just explain how
\leftskip works since \rightskip is analogous.

You can increase the left margin by setting \leftskip to a fixed
nonzero dimension. If you give \leftskip some stretch, you can produce
ragged left text, i.e., text that has an uneven left margin.

Ordinarily, you should enclose any assignment to \leftskip in a group
together with the affected text in order to keep its effect from contin-
uing to the end of your document. However, it’s pointless to change
\leftskip’s value inside a group that is in turn contained within a
paragraph—the value of \leftskip at the end of a paragraph is what
determines how TEX breaks the paragraph into lines.

Ezxample:
{\leftskip = 1in The White Rabbit trotted slowly back
again, looking anxiously about as it went, as if it had
lost something. {\leftskip = 10in % has no effect
It muttered to itself, ‘‘The Duchess! The Duchess! She’ll
get me executed as sure as ferrets are ferrets!’’}\parl}/
produces:
The White Rabbit trotted slowly back again, looking
anxiously about as it went, as if it had lost something.
It muttered to itself, “The Duchess! The Duchess!
She’ll get me executed as sure as ferrets are ferrets!”

21 May 2013 10:27 a.m.

TEX for the Impatient NO© 136

116 Commands for composing paragraphs \ §5

Example:
\pretolerance = 10000 % Don’t hyphenate.
\rightskip = .5in plus 2em
The White Rabbit trotted slowly back again, looking
anxiously about as it went, as if it had lost something.
It muttered to itself, ¢‘The Duchess! The Duchess! She’1ll
get me executed as sure as ferrets are ferrets!’’
produces:
The White Rabbit trotted slowly back again, looking anxiously
about as it went, as if it had lost something. It muttered to
itself, “The Duchess! The Duchess! She’ll get me executed as
sure as ferrets are ferrets!”

% \raggedright

\ttraggedright

These commands cause TEX to typeset your document “ragged right”.
Interword spaces all have their natural size, i.e., they all have the same
width and don’t stretch or shrink. Consequently the right margin is
generally not even. The alternative, which is TEX’s default, is to typeset
your document justified, i.e., with uniform left and right margins. In
justified text, interword spaces are stretched in order to make the right
margin even. Some typographers prefer ragged right because it avoids
distracting “rivers” of white space on the printed page.

You should use the \ttraggedright command when typesetting text
in a monospaced font and the \raggedright command when typesetting
text in any other font.

Most of the time you’ll want to apply these commands to an entire
document, but you can limit their effects by enclosing them in a group.

Ezample:
\raggedright ‘‘You couldn’t have it if you {\it did\/}
want it,’’ the Queen said. ‘‘The rule is, jam tomorrow

and jam yesterday---but never jam {\it today\/}.’’
‘It {\it must\/} come sometimes to ‘jam today,%
thinspace’’ Alice objected. ‘‘No, it can’t’’, said the
Queen. ‘‘It’s jam every {\it other\/} day: today isn’t
any {\it other\/} day.’’

produces:
“You couldn’t have it if you did want it,” the Queen said. “The rule
is, jam tomorrow and jam yesterday—but never jam today.” “It must
come sometimes to ‘jam today,”” Alice objected. “No, it can’t”, said
the Queen. “It’s jam every other day: today isn’t any other day.”

21 May 2013 10:27a.m.

TEX for the Impatient

Shaping paragraphs 117

\hang

This command indents the second and subsequent lines of a paragraph
by \parindent, the paragraph indentation (p.113). Since the first line
is already indented by \parindent (unless you've cancelled the inden-
tation with \noindent), the entire paragraph appears to be indented
by \parindent.

Ezample:
\parindent=24pt \hang ‘I said you {\it looked} like an
egg, Sir,’’ Alice gently explained to Humpty Dumpty. ‘‘And
some eggs are very pretty, you know,’’ she added.
produces:
“I said you looked like an egg, Sir,” Alice gently explained to
Humpty Dumpty. “And some eggs are very pretty, you know,”

she added.
\hangafter [(number) parameter |
\hangindent [(dimen) parameter |

These two parameters jointly specify “hanging indentation” for a para-
graph. The hanging indentation indicates to TEX that certain lines of
the paragraph should be indented and the remaining lines should have
their normal width. \hangafter determines which lines are indented,
while \hangindent determines the amount of indentation and whether it
occurs on the left or on the right:

» Let n be the value of \hangafter. If n < 0, the first —n lines of the
paragraph will be indented. If n > 0, all but the first n lines of the
paragraph will be indented.

= Let = be the value of \hangindent. If z > 0, the lines will be
indented by z on the left. If x < 0 the lines will be indented by —z
on the right.

When you specify hanging indentation, it applies only to the next para-
graph (if you're in vertical mode) or to the current paragraph (if you're in
horizontal mode). TEX uses the values of \hangafter and \hangindent
at the end of a paragraph, when it breaks that paragraph into lines.

Unlike most of the other paragraph-shaping parameters, \hangafter
and \hangindent are reset to their default values at the start of each
paragraph, namely, 1 for \hangafter and 0 for \hangindent. If you
want to typeset a sequence of paragraphs with hanging indentation, use
\everypar (p.113). If you specify \hangafter and \hangindent as well
as \parshape, TEX ignores the \hangafter and \hangindent.

N© 137

21 May 2013 10:27 a.m.

TEX for the Impatient

118 Commands for composing paragraphs \ §5

Example:
\hangindent=6pc \hangafter=-2
This is an example of a paragraph with hanging indentation.
In this case, the first two lines are indented on the left,
but after that we return to unindented text.

produces:
This is an example of a paragraph with hanging in-
dentation. In this case, the first two lines are indented
on the left, but after that we return to unindented text.

Ezample:
\hangindent=-6pc \hangafter=1
This is another example of a paragraph with hanging
indentation. Here, all lines after the first have been
indented on the right. The first line, on the other
hand, has been left unindented.

produces:
This is another example of a paragraph with hanging indentation. Here,
all lines after the first have been indented on the right.
The first line, on the other hand, has been left unin-
dented.

\parshape n i1ly i2ls ... i1,
This command specifies the shape of the first n lines of a paragraph—
the next paragraph if you’re in vertical mode and the current paragraph
if you’re in horizontal mode. The i’s and [’s are all dimensions. The
first line is indented by i; and has length [;, the second line is indented
by i3 and has length [5, and so forth. If the paragraph has more than
n lines, the last indentation/length pair is used for the extra lines. To
achieve special effects such as the one shown here, you usually have to
experiment a lot, insert kerns here and there, and choose your words
to fit the shape.

\parshape, like \hangafter and \hangindent, is effective only for one
paragraph. If you specify \hangafter and \hangindent as well as \par-
shape, TEX ignores the \hangafter and \hangindent.

N© 138

21 May 2013 10:27a.m.

TEX for the Impatient NO© 139

Shaping paragraphs 119

Example:
% A small font and close interline spacing make this work
\smallskip\font\sixrm=cmr6 \sixrm \baselineskip=7pt
\fontdimen3\font = 1.8pt \fontdimen4\font = 0.9pt
\noindent \hfuzz 0.1pt
\parshape 30 Opt 120pt 1pt 118pt 2pt 116pt 4pt 112pt 6pt
108pt 9pt 102pt 12pt 96pt 15pt 90pt 19pt 84pt 23pt 77pt
27pt 68pt 30.5pt 60pt 35pt 52pt 39pt 45pt 43pt 36pt 48pt
27pt 51.5pt 21pt 53pt 16.75pt 53pt 16.75pt 53pt 16.75pt 53pt
16.75pt 53pt 16.75pt 53pt 16.75pt 53pt 16.75pt 53pt 16.75pt
53pt 14.6pt 48pt 24pt 45pt 30.67pt 36.5pt 5lpt 23pt 76.3pt
The wines of France and California may be the best
known, but they are not the only fine wines. Spanish
wines are often underestimated, and quite old ones may
be available at reasonable prices. For Spanish wines
the vintage is not so critical, but the climate of the
Bordeaux region varies greatly from year to year. Some
vintages are not as good as others,
so these years ought to be
s\kern -.1pt p\kern -.1pt e\kern -.1pt c\hfil ially
n\kern .1pt o\kern .1pt t\kern .1pt e\kern .1pt d\hfil:
1962, 1964, 1966. 1958, 1959, 1960, 1961, 1964,
1966 are also good California vintages.
Good luck finding them!

produces:

The wines of France and California
may be the best known, but they
are not the only fine wines. Span-
ish wines are often underestimated,
and quite old ones may be avail-
able at reasonable prices. For
Spanish wines the vintage is
not so critical, but the cli-
mate of the Bordeaux re-
gion varies greatly from
year to year. Some
vintages are not as
good as others,
so these years
ought to be
specially
noted:
1962,
1964,
1966.
1958,
1959,
1960,
1961,
1964,
1966
are also
good Cal-
ifornia vintages.
Good luck finding them!

21 May 2013 10:27 a.m.

| TEX for the Impatient NO 140
120 Commands for composing paragraphs \ §5
\prevgraf [(number) parameter |

In horizontal mode, this parameter speci